RESUMEN
OBJECTIVE: To explore characteristics of tongue pressure changes in nasopharyngeal carcinoma (NPC) patients with dysphagia after radiotherapy using a novel system with multisite flexible sensors. DESIGN: Prospective observational study. SETTING: Inpatient rehabilitation centers and community dwellings. PARTICIPANTS: Nineteen patients with dysphagia after radiotherapy for NPC and 19 healthy participants were recruited for this study (N=38). INTERVENTION: Not applicable. MAIN OUTCOME MEASURES: A new 9-site (3 × 3) flexible tongue pressure sensor was used to measure tongue-to-palate pressure across different parts of the tongue. The oral tongue was divided into 3 parts: anterior tongue region (TAR), central tongue region (TCR), and posterior tongue region (TPR); 3 sensors were placed on each part. The mean tongue pressure and endurance time at the 3 sites in the TAR, TCR, and TPR were analyzed. The ratios of the mean TAR, TCR, and TPR values were calculated. RESULTS: Pressures of TAR, TCR, and TPR in NPC patients with dysphagia were significantly lower than those in healthy participants (P<.05). The pressure in TPR decreased most significantly, followed by that in TCR. The endurance times of TAR and TCR were longer than those of healthy participants (P<.05). The endurance time of TPR was not significantly different between the patients and healthy participants (P>.05). Ratios of pressure between TAR and TCR and TAR and TPR in patients were lower than that in healthy participants (P<.05). There was no significant difference in the TCR to TPR pressure ratio between patients and healthy participants (P>.05). CONCLUSIONS: Tongue pressure significantly decreased in NPC patients with dysphagia, and the drop in pressure was most pronounced in the TPR area. The results of our study indicate that we should pay attention to the pressure training of the TPR during treatments. The endurance time of the TAR and TCR increased significantly, which may be due to bolus transport compensation. Therefore, clinical rehabilitation strategies should aim to increase the endurance time training in NPC patients after radiotherapy to help increase the effectiveness of the swallowing process in patients.
Asunto(s)
Trastornos de Deglución , Neoplasias Nasofaríngeas , Humanos , Trastornos de Deglución/etiología , Carcinoma Nasofaríngeo/radioterapia , Presión , Lengua , Neoplasias Nasofaríngeas/radioterapia , Receptores de Antígenos de Linfocitos TRESUMEN
OBJECTIVE: To evaluate the effect of intensive oropharyngeal functional training on swallowing in patients with dysphagia after radiotherapy for nasopharyngeal carcinoma. METHODS: Fourteen patients with nasopharyngeal carcinomas and dysphagia after radiotherapy received intensive oropharyngeal training for two weeks. The Functional Oral Intake Scale (FOIS) and videofluoroscopic swallowing studies (VFSS) were used to evaluate swallowing function before and after intensive oropharyngeal training. Spatiotemporal parameters of the VFSS were analyzed using a digital image analysis system. RESULTS: After training, the FOIS, Rosenbek penetration-aspiration score, DIGEST, normalized residue ratio scale, and spatiotemporal parameters of VFSS were significantly improved (P < 0.05). CONCLUSIONS: This study indicated that intensive oropharyngeal training improves swallowing function after radiotherapy in patients with nasopharyngeal carcinoma.
Asunto(s)
Trastornos de Deglución , Neoplasias Nasofaríngeas , Humanos , Trastornos de Deglución/etiología , Carcinoma Nasofaríngeo/radioterapia , Deglución , Neoplasias Nasofaríngeas/complicaciones , Neoplasias Nasofaríngeas/radioterapiaRESUMEN
Objective: More than half of post-stroke patients develop dysphagia, which manifests as delayed swallowing and is associated with a high risk of aspiration. In this study, we aimed to investigate the immediate effect of neuromuscular electrical stimulation (NMES) on swallowing initiation in post-stroke patients using videofluoroscopic swallowing study (VFSS) data. Materials and methods: This randomized, self-controlled crossover study included 35 patients with post-stroke dysphagia. All selected patients received real and sham NMES while swallowing 5 ml of thin liquid. Participants completed the conditions in random order, with a 10-min interval between conditions. The primary evaluation indicators included the Modified Barium Swallow Impairment Profile-6 (MBSImp-6) and Penetration-Aspiration Scale (PAS). Secondary indicators included oral transit time (OTT), pharyngeal transit time (PTT), and laryngeal closure duration (LCD). Results: Modified Barium Swallow Impairment Profile-6 (P = 0.008) and PAS (P < 0.001) scores were significantly lower in the Real-NMES condition than in the Sham-NMES condition. OTT (P < 0.001) was also significantly shorter during Real-NMES than during Sham-NMES. However, LCD (P = 0.225) and PTT (P = 0.161) did not significantly differ between the two conditions. Conclusion: Neuromuscular electrical stimulation may represent a supplementary approach for promoting early feeding training in patients with post-stroke dysphagia. Clinical trial registration: [https://clinicaltrials.gov/], identifier [ChiCTR2100052464].
RESUMEN
Aphasia is an acquired language disorder that is a common consequence of stroke. The pathogenesis of the disease is not fully understood, and as a result, current treatment options are not satisfactory. Here, we used blood oxygenation level-dependent functional magnetic resonance imaging to evaluate the activation of bilateral cortices in patients with Broca's aphasia 1 to 3 months after stroke. Our results showed that language expression was associated with multiple brain regions in which the right hemisphere participated in the generation of language. The activation areas in the left hemisphere of aphasia patients were significantly smaller compared with those in healthy adults. The activation frequency, volumes, and intensity in the regions related to language, such as the left inferior frontal gyrus (Broca's area), the left superior temporal gyrus, and the right inferior frontal gyrus (the mirror region of Broca's area), were lower in patients compared with healthy adults. In contrast, activation in the right superior temporal gyrus, the bilateral superior parietal lobule, and the left inferior temporal gyrus was stronger in patients compared with healthy controls. These results suggest that the right inferior frontal gyrus plays a role in the recovery of language function in the subacute stage of stroke-related aphasia by increasing the engagement of related brain areas.