Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Plant Biol ; 23(1): 299, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37268882

RESUMEN

Grona styracifolia is a photophilous legume that contains abundant flavonoids with multiple pharmacological activities, which is used to cure urethral and biliary calculus in China for thousands of years. The authentication of the rate-limiting enzymes involved in the flavonoids biosynthesis pathway enabled a better understanding of the molecular aspect of quality formation and modulation of this medicinal herb. In this study, the chemical distribution characteristics and content of flavonoids in different tissues of Grona styracifolia were analyzed using ultraperormance liquid chromatography coupled with Q-TOF mass spectrometry and showed that active flavonoids were primarily synthesized and stored in the leaves. Subsequently, RNA sequencing (RNA-seq)-based transcriptome profiling of the different tissues revealed that the flavonoids biosynthesis in the leaves was the most active. Meanwhile, 27 full-length transcripts inferred encoding vital enzymes involved in the flavonoids biosynthesis were preliminarily excavated. Finally, four CHSs, four CHIs, and one FNSII were successfully characterized by heterologous expression, which involved in three rate-limiting steps of the flavonoid biosynthetic pathway. In conclusion, these results laid a foundation for further investigation of the molecular mechanism of the biosynthesis and modulation of active flavonoids in Grona styracifolia.


Asunto(s)
Fabaceae , Plantas Medicinales , Transcriptoma , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Perfilación de la Expresión Génica , Flavonoides/metabolismo , Fabaceae/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Physiol Mol Biol Plants ; 29(4): 459-469, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37187774

RESUMEN

Blumea balsamifera, a wooden plant belonging to the family Asteraceae, is a medicinal herb with anticancer, antiviral, and multiple pharmacological effects, which are believed to be caused by its essential oil. The essential oil from B. balsamifera is comprised of mono- and sesqui-terpenes as the majority. Unfortunately, this plant has been facing the challenge of resource shortage, which could be effectively alleviated by biological engineering. Therefore, the identification of key elements involved in the biosynthesis of active ingredients becomes an indispensable prerequisite. In this study, candidate genes encoding monoterpene synthase were screened by transcriptome sequencing combined with metabolomics profiling in the roots, stems, and leaves of B. balsamifera. Then, these candidates were successfully cloned and verified by heterologous expression and in vitro enzyme activity assays. As a result, six candidate BbTPS genes were isolated from B. balsamifera, of which three encoded single-product monoterpene synthases and one encoded a multi-product monoterpene synthase. Among them, BbTPS1, BbTPS3, and BbTPS4 could catalyze the formation of D-limonene, α-phellandrene, and L-borneol, respectively. Meanwhile, BbTPS5 functioned in catalyzing GPP into terpinol, ß-phellandrene, ß-myrcene, D-limonene, and 2-carene in vitro. In general, our results provided important elements for the synthetic biology of volatile terpenes in B. balsamifera, which laid a foundation for subsequent heterologous production of these terpenoids through metabolic engineering and increasing their yield, as well as promoting sustainable development and utilization of B. balsamifera. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01306-8.

3.
BMC Plant Biol ; 22(1): 253, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606691

RESUMEN

BACKGROUND: The large genus Ficus comprises approximately 800 species, most of which possess high ornamental and ecological values. However, its evolutionary history remains largely unknown. Plastome (chloroplast genome) analysis had become an essential tool for species identification and for unveiling evolutionary relationships between species, genus and other rank groups. In this work we present the plastomes of ten Ficus species. RESULTS: The complete chloroplast (CP) genomes of eleven Ficus specimens belonging to ten species were determined and analysed. The full length of the Ficus plastome was nearly 160 kbp with a similar overall GC content, ranging from 35.88 to 36.02%. A total of 114 unique genes, distributed in 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, were annotated in each of the Ficus CP genome. In addition, these CP genomes showed variation in their inverted repeat regions (IR). Tandem repeats and mononucleotide simple sequence repeat (SSR) are widely distributed across the Ficus CP genome. Comparative genome analysis showed low sequence variability. In addition, eight variable regions to be used as potential molecular markers were proposed for future Ficus species identification. According to the phylogenetic analysis, these ten Ficus species were clustered together and further divided into three clades based on different subgenera. Simultaneously, it also showed the relatedness between Ficus and Morus. CONCLUSION: The chloroplast genome structure of 10 Ficus species was similar to that of other angiosperms, with a typical four-part structure. Chloroplast genome sizes vary slightly due to expansion and contraction of the IR region. And the variation of noncoding regions of the chloroplast genome is larger than that of coding regions. Phylogenetic analysis showed that these eleven sampled CP genomes were divided into three clades, clustered with species from subgenus Urostigma, Sycomorus, and Ficus, respectively. These results support the Berg classification system, in which the subgenus Ficus was further decomposed into the subgenus Sycomorus. In general, the sequencing and analysis of Ficus plastomes, especially the ones of species with no or limited sequences available yet, contribute to the study of genetic diversity and species evolution of Ficus, while providing useful information for taxonomic and phylogenetic studies of Ficus.


Asunto(s)
Ficus , Genoma del Cloroplasto , Composición de Base , Ficus/genética , Genoma del Cloroplasto/genética , Repeticiones de Microsatélite/genética , Filogenia
4.
BMC Plant Biol ; 22(1): 86, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35216551

RESUMEN

BACKGROUND: Helicteres angustifolia has long been used in Chinese traditional medicine. It has multiple pharmacological benefits, including anti-inflammatory, anti-viral and anti-tumor effects. Its main active chemicals include betulinic acid, oleanolic acid, helicteric acid, helicterilic acid, and other triterpenoid saponins. It is worth noting that some acylated triterpenoids, such as helicteric acid and helicterilic acid, are characteristic components of Helicteres and are relatively rare among other plants. However, reliance on natural plants as the only sources of these is not enough to meet the market requirement. Therefore, the engineering of its metabolic pathway is of high research value for enhancing the production of secondary metabolites. Unfortunately, there are few studies on the biosynthetic pathways of triterpenoids in H. angustifolia, hindering its further investigation. RESULTS: Here, the RNAs of different groups treated by metabolic stimulation were sequenced with an Illumina high-throughput sequencing platform, resulting in 121 gigabases of data. A total of 424,824 unigenes were obtained after the trimming and assembly of the raw data, and 22,430 unigenes were determined to be differentially expressed. In addition, three oxidosqualene cyclases (OSCs) and four Cytochrome P450 (CYP450s) were screened, of which one OSC (HaOSC1) and one CYP450 (HaCYPi3) achieved functional verification, suggesting that they could catalyze the production of lupeol and oleanolic acid, respectively. CONCLUSION: In general, the transcriptomic data of H. angustifolia was first reported and analyzed to study functional genes. Three OSCs, four CYP450s and three acyltransferases were screened out as candidate genes to perform further functional verification, which demonstrated that HaOSC1 and HaCYPi3 encode for lupeol synthase and ß-amyrin oxidase, which produce corresponding products of lupeol and oleanolic acid, respectively. Their successful identification revealed pivotal steps in the biosynthesis of acylated triterpenoids precursors, which laid a foundation for further study on acylated triterpenoids. Overall, these results shed light on the regulation of acylated triterpenoids biosynthesis.


Asunto(s)
Malvaceae/genética , Malvaceae/metabolismo , Proteínas de Plantas/metabolismo , Triterpenos/metabolismo , Acetatos/farmacología , Acilación , Ciclopentanos/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Malvaceae/efectos de los fármacos , Oxilipinas/farmacología , Filogenia , Proteínas de Plantas/genética , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Ácido Salicílico/farmacología , Triterpenos/química
5.
Plant Physiol Biochem ; 196: 55-64, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36696798

RESUMEN

Terpene synthase (TPS) plays an important role in terpenoids biosynthesis. Cinnamomum camphora (camphor tree) contains dozens of terpenoids with medicinal value, especially borneol, which has been widely used since ancient times. However, limited information is available regarding the genome-wide identification and characterization of the TPS family in the C. camphora. In this study, 82 CcTPS genes were identified from the camphor tree genome (CTG). Gene cluster and sequence syntenic analysis suggested that tandem duplication occurred within the TPS family of the CTG, especially for the TPS-b subfamily. The chemotype-specific gene expression analysis showed significantly differential expression patterns among six chemotypes. It is worth noting that three genes (CcTPS26, CcTPS49 and CcTPS72) exhibited relatively high expression in the borneol-type camphor tree, compared to the other five chemotypes. Further functional characterization of them indicated that they were all bornyl diphosphate synthases (BPPSs), which function in catalyzing GPP into BPP and then undergoes dephosphorylation to yield borneol. This is the first report that multiple BPPSs exist within a single species. Intriguingly, CcTPS49 and CcTPS72 lead to the generation of dextral-borneol, while CcTPS26 contributes to the biosynthesis of levo-borneol. In addition, the functional characterization of another six CcTPSs suggested that they are responsible for the biosynthesis of linalool, eucalyptol and several other monoterpenes in camphor tree. In conclusion, these novel results provide a foundation for further exploration of the role of the CcTPS gene family and shed light on a better understanding of the biosynthesis and accumulation of monoterpenes in camphor tree.


Asunto(s)
Cinnamomum camphora , Terpenos , Terpenos/metabolismo , Cinnamomum camphora/genética , Monoterpenos/metabolismo
6.
J AOAC Int ; 105(1): 202-210, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33944934

RESUMEN

BACKGROUND: Buddleja lindleyana Fort., which belongs to the Loganiaceae with a distribution throughout the tropics, is widely used as an ornamental plant in China. There are several morphologically similar species in the genus Buddleja, but the lack of comprehensive molecular and phylogenetic studies makes it difficult to distinguish related species, which hinders further studies of this genus. OBJECTIVE: Using molecular biology techniques to sequence and analyze the complete chloroplast (cp) genome of B. lindleyana. METHODS: After sequencing of the genomic DNA using next-generation sequencing, a series of bioinformatics software were used to assemble and analyze the molecular structure of the cp genome of B. lindleyana. RESULTS: The complete cp genome of B. lindleyana is a circular 154 487-bp-long molecule with a GC (Guanine and Cytosine) content of 38.1%. It has a quadripartite structure, including a LSC region (85 489 base pair (bp)), a small single-copy region (17 898 bp), and a pair of inverted repeat regions (25 550 bp). A total of 133 genes were identified in this genome, including 86 protein-coding genes, 37 tRNA (transfer Ribonucleic Acid) genes, eight rRNA (ribosomal Ribonucleic Acid) genes, and two pseudogenes. CONCLUSION: These results suggest that the B. lindelyana cp genome could be used as a potential genomic resource to resolve the phylogenetic positions and relationships of Loganiaceae, and will offer valuable information for future research in the identification of Buddleja species and will conduce to genomic investigations into these species. HIGHLIGHTS: This paper study the B. lindelyana cp genome and it's structural characteristics, and analyze the phylogeny of Loganiaceae.


Asunto(s)
Buddleja , Genoma del Cloroplasto , China , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia
7.
Sci Rep ; 11(1): 22239, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782652

RESUMEN

Ardisia Sw. (Primulaceae) is naturally distributed in tropical and subtropical areas. Most of them possess edible and medicinal values and are popular in clinical and daily use in China. However, ambiguous species delineation and genetic information limit the development and utilization of this genus. In this study, the chloroplast genomes of four Ardisia species, namely A. gigantifolia Stapf, A. crenata Sims, A. villosa Roxb. and A. mamillata Hance, were sequenced, annotated, and analyzed comparatively. All the four chloroplast genomes possess a typical quadripartite structure, and each of the genomes is about 156 Kb in size. The structure and gene content of the Ardisia plastomes were conservative and showed low sequence divergence. Furthermore, we identified five mutation hotspots as candidate DNA barcodes for Ardisia, namely, trnT-psbD, ndhF-rpl32, rpl32-ccsA, ccsA-ndhD and ycf1. Phylogenetic analysis based on the whole-chloroplast genomes data showed that Ardisia was sister to Tapeinosperma Hook. f. In addition, the results revealed a great topological profile of Ardisia's with strong support values, which matches their geographical distribution patterns. Summarily, our results provide useful information for investigations on taxonomic differences, molecular identification, and phylogenetic relationships of Ardisia plants.


Asunto(s)
Ardisia/clasificación , Ardisia/genética , Genoma del Cloroplasto , Genómica , China , Biología Computacional/métodos , Genómica/métodos , Filogenia , Polimorfismo Genético , Análisis de Secuencia de ADN , Secuenciación del Exoma
8.
PeerJ ; 9: e11465, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249483

RESUMEN

BACKGROUND: The borneol chemotype of Cinnamomum camphora (BCC), a monoterpene-rich woody plant species, is the sole source prescribed by the Chinese Pharmacopoeia for the production of natural D-borneol, a major monoterpene in BCC used for millennia as a topical analgesic in China. Nevertheless, the possible gene-regulatory roles of transcription factors (TFs) in BCC's monoterpenoid biosynthesis remained unknown. Here, a joint analysis of the transcriptome and terpenoid metabolome of BCC induced by mechanical damage (MD) was used to comprehensively explore the interaction between TFs and terpene synthase (TPS) unigenes that might participate in monoterpene biosynthesis in BCC. RESULTS: Gas chromatography-mass spectrometry analysis detected 14 monoterpenes and seven sesquiterpenes. All but two monoterpenes underwent a significantly increased accumulation after the MD treatment. RNA sequencing data revealed that 10 TPS, 82 MYB, 70 AP2/ERF, 38 BHLH, 31 WRKY, and 29 bZIP unigenes responded to the MD treatment. A correlation analysis revealed that three monoterpene synthase genes (CcTPS1, CcTPS3, CcTPS4) highly correlated with multiple monoterpenes, namely D-borneol, camphor, and bornyl acetate, which could be responsible for monoterpenoid biosynthesis in BCC. Furthermore, five WRKY, 15 MYB, 10 ERF/AP2, five bZIP, and two BHLH genes had strong, positive correlations with CcTPS1 or CcTPS4, judging by their high coefficient values (R2 > 0.8). The bioinformatics results were verified by quantitative real-time PCR. CONCLUSION: This study provides insight into the genes involved in the biosynthesis and regulation of monoterpene in BCC and thus provides a pool of candidate genes for future mechanistic analyses of how monoterpenes accumulate in BCC.

9.
Front Plant Sci ; 12: 708697, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589098

RESUMEN

Trans-isopentenyl diphosphate synthases (TIDSs) genes are known to be important determinants for terpene diversity and the accumulation of terpenoids. The essential oil of Cinnamomum camphora, which is rich in monoterpenes, sesquiterpenes, and other aromatic compounds, has a wide range of pharmacological activities and has therefore attracted considerable interest. However, the TIDS gene family, and its relationship to the camphor tree (C. camphora L. Presl.), has not yet been characterized. In this study, we identified 10 TIDS genes in the genome of the C. camphora borneol chemotype that were unevenly distributed on chromosomes. Synteny analysis revealed that the TIDS gene family in this species likely expanded through segmental duplication events. Furthermore, cis-element analyses demonstrated that C. camphora TIDS (CcTIDS) genes can respond to multiple abiotic stresses. Finally, functional characterization of eight putative short-chain TIDS proteins revealed that CcTIDS3 and CcTIDS9 exhibit farnesyl diphosphate synthase (FPPS) activity, while CcTIDS1 and CcTIDS2 encode geranylgeranyl diphosphate synthases (GGPPS). Although, CcTIDS8 and CcTIDS10 were found to be catalytically inactive alone, they were able to bind to each other to form a heterodimeric functional geranyl diphosphate synthase (GPPS) in vitro, and this interaction was confirmed using a yeast two-hybrid assay. Furthermore, transcriptome analysis revealed that the CcTIDS3, CcTIDS8, CcTIDS9, and CcTIDS10 genes were found to be more active in C. camphora roots as compared to stems and leaves, which were verified by quantitative real-time PCR (qRT-PCR). These novel results provide a foundation for further exploration of the role of the TIDS gene family in camphor trees, and also provide a potential mechanism by which the production of camphor tree essential oil could be increased for pharmacological purposes through metabolic engineering.

10.
PeerJ ; 8: e9311, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32566406

RESUMEN

BACKGROUND: Dextrorotatory borneol (D-borneol), a cyclic monoterpene, is widely used in traditional Chinese medicine as an efficient topical analgesic drug. Fresh leaves of Cinnamomum trees, e.g., C. burmannii and C. camphor, are the main sources from which D-borneol is extracted by steam distillation, yet with low yields. Insufficient supply of D-borneol has hampered its clinical use and production of patent remedies for a long time. Biological synthesis of D-borneol offers an additional approach; however, mechanisms of D-borneol biosynthesis remain mostly unresolved. Hence, it is important and necessary to elucidate the biosynthetic pathway of D-borneol. RESULTS: Comparative analysis on the gene expression patterns of different D-borneol production C. burmannii samples facilitates elucidation on the underlying biosynthetic pathway of D-borneol. Herein, we collected three different chemotypes of C. burmannii, which harbor different contents of D-borneol.A total of 100,218 unigenes with an N50 of 1,128 bp were assembled de novo using Trinity from a total of 21.21 Gb clean bases. We used BLASTx analysis against several public databases to annotate 45,485 unigenes (45.38%) to at least one database, among which 82 unigenes were assigned to terpenoid biosynthesis pathways by KEGG annotation. In addition, we defined 8,860 unigenes as differentially expressed genes (DEGs), among which 13 DEGs were associated with terpenoid biosynthesis pathways. One 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and two monoterpene synthase, designated as CbDXS9, CbTPS2 and CbTPS3, were up-regulated in the high-borneol group compared to the low-borneol and borneol-free groups, and might be vital to biosynthesis of D-borneol in C. burmannii. In addition, we identified one WRKY, two BHLH, one AP2/ERF and three MYB candidate genes, which exhibited the same expression patterns as CbTPS2 and CbTPS3, suggesting that these transcription factors might potentially regulate D-borneol biosynthesis. Finally, quantitative real-time PCR was conducted to detect the actual expression level of those candidate genes related to the D-borneol biosynthesis pathway, and the result showed that the expression patterns of the candidate genes related to D-borneol biosynthesis were basically consistent with those revealed by transcriptome analysis. CONCLUSIONS: We used transcriptome sequencing to analyze three different chemotypes of C. burmannii, identifying three candidate structural genes (one DXS, two monoterpene synthases) and seven potential transcription factor candidates (one WRKY, two BHLH, one AP2/ERF and three MYB) involved in D-borneol biosynthesis. These results provide new insight into our understanding of the production and accumulation of D-borneol in C. burmannii.

11.
Zhongguo Zhen Jiu ; 39(7): 748-54, 2019 Jul 12.
Artículo en Zh | MEDLINE | ID: mdl-31286738

RESUMEN

OBJECTIVE: To explore the effects on the recovery of the motor and cognitive functions of the rats with permanent middle cerebral artery occlusion (pMCAO) after treated with Jin's three-needle acupuncture at head acupoints combined with rota-rod training. METHODS: A total of 38 male SD rats were randomized into 3 groups, named a sham-operation group (11 rats), a model group (13 rats) and a treatment group (14 rats). The electrocoagulation method was adopted to establish the model of pMCAO on the right cerebrum. Starting from the 1st day after successful modeling, acupuncture was applied to the "three points of intelligence", the "three points of temporal area" and the "three points of brain". Additionally, the rota-rod training was used. Acupuncture was given once a day and the training was three times a day. In the sham-operation group and the model group, empty grasp fixation was performed when acupuncture was applied in the treatment group, and there was no intervention at the rest of the time. There was 1 day of interval after consecutive 6 days of intervention. Totally, the intervention was for 3 weeks. After modeling, the brain section was collected from 3 rats of each group on the 1st day and was stained with TTC to observe the condition of cerebral ischemia. From day 1 to 7, the neurological function score was evaluated. The footprint analysis and rota-rod test were performed on day 1, 7, 14 and 21. The Morris water maze test was performed from day 22 to 26. RESULTS: Compared with the sham-operation group, cerebral ischemia presented obviously, the score of neurological function was increased, the back front distances on the left were increased on day 1, 7 and 14 separately, the revolutions per minute (RPM) of the rota-rod were reduced at each of the above 4 time points, the latency of navigation trial was increased and the movement time percentage in Q3 quadrant of spatial probe trial was reduced in the model group (P<0.01, P<0.05). Compared with the model group, the area of cerebral ischemia was not obviously different (P>0.05), the score of neurological function was reduced on day 6, the back front distance on the left was reduced on day 14, RPM of the rota-rod were increased on day 14 and 21, the latency of navigation trial were reduced from day 23 to 25 and the movement time percentage in Q3 quadrant of spatial probe trial was increased in the treatment group (P<0.01, P<0.05). CONCLUSION: Jin's three-needle acupuncture at head acupoints combined with rota-rod training improve the behavioral performance of pMCAO rats and promote the recovery of motor and cognitive functions.


Asunto(s)
Terapia por Acupuntura , Infarto de la Arteria Cerebral Media , Puntos de Acupuntura , Animales , Cognición , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA