RESUMEN
2D transition metal dichalcogenides (TMDs) have garnered significant interest as cathode materials for aqueous zinc-ion batteries (AZIBs) due to their open transport channels and abundant Zn2+ intercalation sites. However, unmodified TMDs exhibit low electrochemical activity and poor kinetics owing to the high binding energy and large hydration radius of divalent Zn2+. To overcome these limitations, an interlayer engineering strategy is proposed where K+ is preintercalated into K-MoS2 nanosheets, which then undergo in situ growth on carbon nanospheres (denoted as K-MoS2@C nanoflowers). This strategy stimulates in-plane redox-active sites, expands the interlayer spacing (from 6.16 to 9.42 Å), and induces the formation of abundant MoS2 1T-phase. The K-MoS2@C cathode demonstrates excellent redox activity and fast kinetics, attributed to the potassium ions acting as a structural "stabilizer" and an electrostatic interaction "shield," accelerating charge transfer, promoting Zn2+ diffusion, and ensuring structural stability. Meanwhile, the carbon nanospheres serve as a 3D conductive network for Zn2+ and enhance the cathode's hydrophilicity. More significantly, the outstanding electrochemical performance of K-MoS2@C, along with its superior biocompatibility and degradability of its related components, can enable an implantable energy supply, providing novel opportunities for the application of transient electronics.
RESUMEN
Aqueous ammonium-ion supercapacitors (AASCs) are recognized for their rapid charge-discharge capability, long cycle life, and excellent power density. However, they still confront the challenges of low energy density. To address the above issue, this work proposes a novel strategy involving the establishment of CuCo2S4@MoS2 core@shell heterostructures to enhance the capacity of electrode material. The double electric layer energy storage mechanism of the MoS2 shell facilitates the storage and provision of a substantial ammonium source for NH4 + insertion into CuCo2S4, thereby enhancing the electrochemical performance of AASCs. The density functional theory (DFT) calculations demonstrate that the CuCo2S4@MoS2 core@shell heterostructures exhibit better affinity for NH4 + and improved conductivity. Furthermore, the internal electric field at the heterojunction accelerates NH4 + transfer, thereby enhancing the pseudocapacitive behavior of CuCo2S4. Owing to the abundant active sites and pronounced pseudo-capacitance, the CuCo2S4@MoS2 electrode achieves a specific capacity of 2045 C g-1 at 1 A g-1. With activated carbon (AC) as the negative electrode, the fabricated CuCo2S4@MoS2//AC AASC device attains a specific capacity of 591 C g-1 and an energy density of 83.23 Wh kg-1. This work presents a promising new strategy for the next generation of AASCs.
RESUMEN
The practical application of Li-S batteries is still severely restricted by poor cyclic performance caused by the intrinsic polysulfides shuttle effect, which is even more severe under the high-temperature condition owing to the inevitable increase of polysulfides' solubility and diffusion rate. Herein, tungsten-doped vanadium dioxide (W-VO2) micro-flowers are employed with first-order metal-insulator phase transition (MIT) property as a robust and multifunctional modification layer to hamper the shuttle effect and simultaneously improve the thermotolerance of the common separator. Tungsten doping significantly reduces the transition temperature from 68 to 35 °C of vanadium dioxide, which renders the W-VO2 easier to turn from the insulating monoclinic phase into the metallic rutile phase. The systematic experiments and theoretical analysis demonstrate that the temperature-induced in-suit MIT property endows the W-VO2 catalyst with strong chemisorption against polysulfides, low energy barrier for liquid-to-solid conversion, and outstanding diffusion kinetics of Li-ion under high temperatures. Benefiting from these advantages, the Li-S batteries with W-VO2 modified separator exhibit significantly improved rate and long-term cyclic performance under 50 °C. Remarkably, even at an elevated temperature (80 °C), they still exhibit superior electrochemical performance. This work opens a rewarding avenue to use phase-changing materials for high-temperature Li-S batteries.
RESUMEN
Topological materials carrying topological surface states (TSSs) have extraordinary carrier mobility and robustness, which provide a new platform for searching for efficient hydrogen evolution reaction (HER) electrocatalysts. However, the majority of these TSSs originate from the sp band of topological quantum catalysts rather than the d band. Here, based on the density functional theory calculation, it is reported a topological semimetal Pd3Sn carrying TSSs mainly derived from d orbital and proposed that optimizing surface state electrons of Pd3Sn by introduction heteroatoms (Ni) can promote hybridization between hydrogen atoms and electrons, thereby reducing the Gibbs free energy (ΔGH) of adsorbed hydrogen and improving its HER performance. Moreover, this is well verified by electrocatalytic experiment results, the Ni-doped Pd3Sn (Ni0.1Pd2.9Sn) show much lower overpotential (-29 mV vs RHE) and Tafel slope (17 mV dec-1) than Pd3Sn (-39 mV vs RHE, 25 mV dec-1) at a current density of 10 mA cm-2. Significantly, the Ni0.1Pd2.9Sn nanoparticles exhibit excellent stability for HER. The electrocatalytic activity of Ni0.1Pd2.9Sn nanoparticles is superior to that of commercial Pt. This work provides an accurate guide for manipulating surface state electrons to improve the HER performance of catalysts.
RESUMEN
Polysulfide shuttle effect and sluggish sulfur reaction kinetics severely impede the cycling stability and sulfur utilization of lithium-sulfur (Li-S) batteries. Modulating d-band electronic structures of molybdenum disulfide electrocatalysts via p/n doping is promising to boost polysulfide conversion and suppress polysulfide migration in lithium-sulfur batteries. Herein, p-type V-doped MoS2 (V-MoS2 ) and n-type Mn-doped MoS2 (Mn-MoS2 ) catalysts are well-designed. Experimental results and theoretical analyses reveal that both of them significantly increase the binding energy of polysulfides on the catalysts' surface and accelerate the sluggish conversion kinetics of sulfur species. Particularly, the p-type V-MoS2 catalyst exhibits a more obvious bidirectional catalytic effect. Electronic structure analysis further demonstrates that the superior anchoring and electrocatalytic activities are originated from the upward shift of the d-band center and the optimized electronic structure induced by duplex metal coupling. As a result, the Li-S batteries with V-MoS2 modified separator exhibit a high initial capacity of 1607.2 mAh g-1 at 0.2 C and excellent rate and cycling performance. Moreover, even at a high sulfur loading of 6.84 mg cm-2 , a favorable initial areal capacity of 8.98 mAh cm-2 is achieved at 0.1 C. This work may bring widespread attention to atomic engineering in catalyst design for high-performance Li-S batteries.
RESUMEN
Biodegradable implantable devices are of growing interest in biosensors and bioelectronics. One of the key unresolved challenges is the availability of power supply. To enable biodegradable energy-storage devices, herein, 2D heterostructured MoO3 -MoS2 nanosheet arrays are synthesized on water-soluble Mo foil, showing a high areal capacitance of 164.38 mF cm-2 (at 0.5 mA cm-2 ). Employing the MoO3 -MoS2 composite as electrodes of a symmetric supercapacitor, an asymmetric Zn-ion hybrid supercapacitor, and an Mg primary battery are demonstrated. Benefiting from the advantages of MoO3 -MoS2 heterostructure, the Zn-ion hybrid supercapacitors deliver a high areal capacitance (181.86 mF cm-2 at 0.5 mA cm-2 ) and energy density (30.56 µWh cm-2 ), and the Mg primary batteries provide a stable high output voltage (≈1.6 V) and a long working life in air/liquid environment. All of the used materials exhibit desirable biocompatibility, and these fabricated devices are also fully biodegradable. Demonstration experiments display their potential applications as biodegradable power sources for various electronic devices.
RESUMEN
Metal sulfides are often used as cathode materials for lithium-ion batteries (LIBs) owing to their high theoretical specific capacity; however, excessively fast capacity decay during charging/discharging and rapid shedding during cycling limits their practical application in batteries. In this study, we proposed a strategy using plasma treatment combined with the solvothermal method to prepare cobalt sulfide (Co1-xS)-carbon nanofibers (CNFs) composite. The plasma treatment could introduce oxygen-containing polar groups and defects, which could improve the hydrophilicity of the CNFs for the growth of the Co1-xS, thereby increasing the specific capacity of the composite electrode. The results show that the composite electrode present a high discharge specific capacity (839 mAh g-1at a current density of 100 mA g-1) and good cycle stability (the capacity retention rate almost 100% at 2000 mA g-1after 500 cycles), attributing to the high conductivity of the CNFs. This study proves the application of plasma treatment and simple vulcanization method in high-performance LIBs.
RESUMEN
Multivalent ion hybrid supercapacitors have been developed as the novel electrochemical energy storage systems due to their combined merits of high energy density and high power density. Nevertheless, there are still some challenges due to the limited understanding of the electrochemical behaviors of multivalent ions in the electrode materials, which greatly hinders the large scale applications of its based hybrid supercapacitors. Herein, the long-term electrochemical behaviors of MnO2 -based electrode in the divalent Mg2+ ions electrolyte are systematically studied and linked with the morphological and electronic evolution of MnO2 by cycling at different potential windows (spanning to 1.2 V). It reveals that the different potential windows result in the different electrochemical behaviors, which can be divided into two ranges (below and above -0.2 V). And, the electrode cycled at a potential window of 0-1.2 V delivers the highest capacitance of 967 F g-1 at a scan rate of 10 mV s-1 , in which the MnO2 is transformed into a uniformly distributed and nonagglomerated nanoflake morphology promoting the intercalation and deintercalation of Mg2+ ions. This study will enrich the understanding of the charge storage mechanism of multivalent ions and provide significant guidance on the performance improvement of the hybrid supercapacitors.
RESUMEN
Considering size effect and functionalized pore interaction dyes guests and MOFs hosts, 4-aminonaphthalimide was successfully introduced into the pore of LnMOF for the first time and constructed 4-ANAâLnMOF luminescent composites with excellent dual-emission properties. A series of temperature-dependent luminescence test results show that 4-ANAâGd4L3 can be used as a reversible ratiometric luminescent temperature sensor. The functional construction method provides ideas for the development of clear purpose novel dual-emission dyeâLnMOF ratiometric luminescent sensors.
RESUMEN
It was demonstrated that suitable interfaces between two materials can enhance the separation of photogenerated carriers. In this study, ZrO2/ZnO interfaces with type I structure were designed and prepared by the electrospinning technique. The obtained ZrO2/ZnO:Eu3+ (ZZOE) composites are highly porous in the form of nanobelts with width of 600-700 nm, comprising ZnO and ZrO2 nanocrystals, and the Eu doping can hinder the t-m phase transition of ZrO2. By tuning the annealing temperature, the inner stress and defects can be well controlled to improve the photoluminescence (PL) of the ZZOE porous nanobelts. Macro- and micro-PL spectra indicated that the body oxygen vacancies benefit the PL from Eu3+ ions, whereas the surficial ones do not. The optimal parameters for the preparation of ZZOE porous nanobelts were also investigated. Finally, a charge transfer mechanism was proposed to illuminate the PLs from the ZZOE porous nanobelts.
RESUMEN
Vertically stacked van der Waals heterostructures composed of compositionally different two-dimensional atomic layers give rise to interesting properties due to substantial interactions between the layers. However, these interactions can be easily obscured by the twisting of atomic layers or cross-contamination introduced by transfer processes, rendering their experimental demonstration challenging. Here, we explore the electronic structure and its strain dependence of stacked MoSe2/WSe2 heterostructures directly synthesized by chemical vapor deposition, which unambiguously reveal strong electronic coupling between the atomic layers. The direct and indirect band gaps (1.48 and 1.28 eV) of the heterostructures are measured to be lower than the band gaps of individual MoSe2 (1.50 eV) and WSe2 (1.60 eV) layers. Photoluminescence measurements further show that both the direct and indirect band gaps undergo redshifts with applied tensile strain to the heterostructures, with the change of the indirect gap being particularly more sensitive to strain. This demonstration of strain engineering in van der Waals heterostructures opens a new route toward fabricating flexible electronics.
RESUMEN
Nanostructured metal sulfides with excellent electrochemical activity and electrical conductivity are particularly promising for applications in high-performance energy storage devices. Here, we report on the facile synthesis of nanostructured CuS networks composed of interconnected nanoparticles as novel battery-type materials for asymmetric supercapacitors. We find that the CuS networks exhibit a high specific capacity of 49.8 mA g(-1) at a current density of 1 A g(-1), good rate capability and cycle stability. The superior performance could be attributed to the interconnected nanoparticles of CuS networks, which can facilitate electrolyte diffusion and provide fast electron pathways. Furthermore, an aqueous asymmetric supercapacitor has been assembled by using the CuS networks as the positive electrode and activated carbon as the negative electrode. The assembled device can work at a high operating voltage of 1.6 V and show a maximum energy density of 17.7 W h kg(-1) at a power density of 504 W kg(-1). This study indicates that the CuS networks have great potential for supercapacitor applications.
RESUMEN
An alternative routine is presented by constructing a novel architecture, conductive metal/transition oxide (Co@Co3O4) core-shell three-dimensional nano-network (3DN) by surface oxidating Co 3DN in situ, for high-performance electrochemical capacitors. It is found that the Co@Co3O4 core-shell 3DN consists of petal-like nanosheets with thickness of <10 nm interconnected forming a 3D porous nanostructure, which preserves the original morphology of Co 3DN well. X-ray photoelectron spectroscopy by polishing the specimen layer by layer reveals that the Co@Co3O4 nano-network is core-shell-like structure. In the application of electrochemical capacitors, the electrodes exhibit a high specific capacitance of 1049 F g(-1) at scan rate of 2 mV/s with capacitance retention of ~52.05% (546 F g(-1) at scan rate of 100 mV) and relative high areal mass density of 850 F g(-1) at areal mass of 3.52 mg/cm(2). It is believed that the good electrochemical behaviors mainly originate from its extremely high specific surface area and underneath core-Co "conductive network". The high specific surface area enables more electroactive sites for efficient Faradaic redox reactions and thus enhances ion and electron diffusion. The underneath core-Co "conductive network" enables an ultrafast electron transport.
RESUMEN
Porous Co3O4 nanonetworks (NNWs), converted from precursor CoOOH nanosheets, have been synthesized via a controllable chemical reaction route followed by calcination at 400 °C in air. The morphologies and microstructures of the precursor nanosheets and the final products were characterized by high-resolution transmission electron microscopy and X-ray diffraction, respectively. The growth mechanism of CoOOH nanosheets and the structural transformation processes of NNWs were investigated in detail. Significantly, the porous Co3O4 NNW based sensor showed an enhanced response to toluene gas at low concentration, which was mainly due to its porous neck-connected networks.
RESUMEN
Aqueous electrochemical energy storage devices (AEESDs) are considered one of the most promising candidates for large-scale energy storage infrastructure due to their high affordability and safety. Developing electrodes with the merits of high energy density and long lifespan remains a challenging issue toward the practical application of AEESDs. Research attempts at electrode materials, nanostructure configuration, and electronic engineering show the limitations due to the inherent contradictions associated with thicker electrodes and ion-accessible kinetics. Herein, we propose an intercalation chemistry engineering strategy to enhance the electrolyte ion (de)intercalation behaviors during the electrochemical charge-discharge. To validate this strategy, the prototypical model of a high-mass-loading MnO2-based electrode is used with controlled intercalation of Na+ and H2O. Theoretical and experimental results reveal that an optimal content of Na+ and H2O on the MnO2-based electrode exhibits superior electrochemical performance. Typically, the resultant electrode exhibits an impressive areal capacitance of 1551 mF/cm2 with a mass loading of 9.7 mg/cm2 (at 1 mA/cm2). Furthermore, the assembled full-cell with obtained MnO2-based electrode delivers a high energy density of 0.12 mWh/cm2 (at 20.02 mW/cm2) and ultra-high cycling stability with a capacitance retention percentage of 89.63 % (345 mF/cm2) even after 100,000 cycles (tested over 72 days).
RESUMEN
Oxygen vacancies (VO) in metal oxide semiconductors play an important role in improving gas-sensing performance of chemiresistive gas sensors. Nonetheless, there is still a lack of clear understanding of the inherent mechanism of the influence of oxygen vacancies on gas sensing due to generally focusing on the concentration of VO. Herein, oxygen vacancies were rationally modulated in WO3 nanoflower structures via an annealing process, resulting in a transformation of VO from neutral (VO0) to a doubly ionized (VO2+) state. Density functional theory (DFT) calculations indicate that VO2+ is significantly more efficient than VO0 for NO2 detection in competition with atmospheric O2. Benefiting from a high concentration of VO2+, the WO3-450 (WO3 annealed at 450 °C) sensor exhibits excellent sensing performance with an ultrahigh sensitivity (3674.1 to 5 ppm NO2), superior selectivity, and long-term stability (one month). Furthermore, the sensor with the wide range of concentration detection not only can detect NO2 gas with parts per million (ppm) but also can detect NO2 with parts per billion (ppb) level concentration, with a high sensibility reaching 2.8 to 25 ppb NO2 and over 100 to 100 ppb NO2. This study elucidates the oxygen vacancy mediated sensing mechanism toward NO2 and provides an effective strategy for the rational design of gas sensors with high sensing performance.
RESUMEN
Layered double hydroxide (LDH) materials, despite their high theoretical capacity, exhibit significant performance degradation with increasing load due to their low conductivity. Simultaneously achieving both high capacity and high rate performance is challenging. Herein, we fabricated vertically aligned CuO nanowires in situ on the copper foam (CF) substrate by alkali-etching combined with the annealing process. Using this as a skeleton, electrochemical deposition technology was used to grow the amorphous α-phase CoNi-LDH nanosheets on its surface. Thanks to the high specific surface area of the CuO skeleton, ultrahigh loading (Ì16.36 mg cm-2) was obtained in the fabricated CF/CuO@CoNi-LDH electrode with the cactus-like hierarchical structure, which enhanced the charge transfer and ion diffusion dynamics. The CF/CuO@CoNi-LDH electrode achieved a good combination of high areal capacitance (33.5 F cm-2) and high rate performance (61% capacitance retention as the current density increases 50 times). The assembled asymmetric supercapacitor device demonstrated a maximum potential window of 0-1.6 V and an energy density of 1.7 mWh cm-2 at a power density of 4 mW cm-2. This work provides a feasible strategy for the design and fabrication of high-mass-loading LDH composites for electrochemical energy storage applications.
RESUMEN
Transition metal dichalcogenides (TMDs) have been widely studied as catalysts for lithium-sulfur batteries due to their good catalytic properties. However, their poor electronic conductivity leads to slow sulfur reduction reactions. Herein, a simple Zn2+ intercalation strategy was proposed to promote the phase transition from semiconducting 2H-phase to metallic 1T-phase of MoS2. Furthermore, the Zn2+ between layers can expand the interlayer spacing of MoS2 and serve as a charge transfer bridge to promote longitudinal transport along the c-axis of electrons. DFT calculations further prove that Zn-MoS2 possesses better charge transfer ability and stronger adsorption capacity. At the same time, Zn-MoS2 exhibits excellent redox electrocatalytic performance for the conversion and decomposition of polysulfides. As expected, the lithium-sulfur battery using Zn0.12MoS2-carbon nanofibers (CNFs) as the cathode has high specific capacity (1325 mAh g-1 at 0.1 C), excellent rate performance (698 mAh g-1 at 3 C), and outstanding cycle performance (it remains 604 mAh g-1 after 700 cycles with a decay rate of 0.045% per cycle). This study provides valuable insights for improving electrocatalytic performance of lithium-sulfur batteries.
RESUMEN
Transition metal oxide semiconductors have great potential for use in H2 sensors, but in recent years, the strange phenomena about gas-sensitive performance associated with their special properties have been more widely discussed in research. In some cases, the resistance of transition metal oxide gas sensors will emerge with some changes contrary to their intrinsic semiconductor characteristics, especially in gas sensor research of WO3. Based on the hydrothermal synthesis of WO3, our work focuses on the abnormal change of tungsten oxide resistance to different gases at low temperature (80-200 °C) and high temperature (above 200 °C). Through in situ FT-IR and in situ XPS, combined with density functional theory calculations, a new reasonable explanation of WO3 is proposed for the abnormal resistance change caused by temperature and the strange response due to gas concentration. The occurrence of these findings can be attributed to the synergistic effect resulting from the presence of two contributing factors. One of them is attributed to the alteration in the surface valence state of WO3 induced by gas, resulting in the reduction of W6+. The other one is due to the reaction between gas and adsorbed oxygen on the surface of WO3. This work presents a novel and rational concept for addressing the reaction mechanism between gas and transition metal oxide semiconductors, thereby paving the way for the development of highly efficient gas sensors based on transition metal oxide semiconductors.
Asunto(s)
Hidrógeno , Óxidos , Temperatura , Tungsteno , Tungsteno/química , Óxidos/química , Hidrógeno/química , Semiconductores , Gases/química , Teoría Funcional de la DensidadRESUMEN
The Watson-Crick base-pairing with specificity and predictability makes DNA molecules suitable for building versatile nanoscale structures and devices, and the DNA origami method enables researchers to incorporate more complexities into DNA-based devices. Thermally controlled atomic force microscopy in combination with nanomechanical spectroscopy with forces controlled in the pico Newton (pN) range as a novel technique is introduced to directly investigate the kinetics of multistrand DNA hybridization events on DNA origami nanopores under defined isothermal conditions. For the synthesis of DNA nanostructures under isothermal conditions at 60 °C, a higher hybridization rate, fewer defects, and a higher stability are achieved compared to room-temperature studies. By quantifying the assembly times for filling pores in origami structures at several constant temperatures, the fill factors show a consistent exponential increase over time. Furthermore, the local hybridization rate can be accelerated by adding a higher concentration of the staples. The new insight gained on the kinetics of staple-scaffold hybridization on the synthesis of two dimensional DNA origami structures may open up new routes and ideas for designing DNA assembly systems with increased potential for their application.