Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 62(30): 12001-12008, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37452746

RESUMEN

A europium(III) metal-organic framework (MOF), namely, {[[(CH3)2NH2]3Eu2(DTTP-2OH)2(HCOO)(H2O)]·4H2O}n (Eu-MOF, H4DTTP-2OH = 2',5'-dihydroxy-[1,1':4',1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid) has been assembled through solvothermal method. The Eu-MOF is a three-dimensional (3D) (4,4,8)-connected topological framework with binuclear Eu(III) clusters as secondary building units, in which a richly ordered hydrogen bonding network formed among the free H2O molecules, dimethylamine cations, and phenolic hydroxyl groups provides a potential pathway for proton conduction. The proton conductivity reaches the category of superionic conductors (σ > 10-4 S cm-1) at room temperature with a maximum conductivity of 1.91 × 10-3 S cm-1 at 60 °C and 98% RH. Moreover, it also can be used as a fluorescence sensor in aqueous solution with detection limits of 0.14 µM for tetracycline, 0.13 µM for oxytetracycline and 0.11 µM for doxycycline. These results pave new methods for constructing MOFs with high proton conductivity and responsive fluorescence.

2.
ChemSusChem ; : e202400969, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874368

RESUMEN

Exploring low-cost visible light photocatalysts for CO2 reduction to produce proportionally adjustable syngas is of great significance for meeting the needs of green chemical industry. A S-Scheme CeO2/g-C3N4 (CeO2/CN) heterojunction was constructed by using a simple two-step calcination method. During the photocatalytic CO2 reduction process, the CeO2/CN heterojunction can present a superior photocatalytic performance, and the obtained CO/H2 ratios in syngas can be regulated from 1:0.16 to 1:3.02. In addition, the CO and H2 production rate of the optimal CeO2/CN composite can reach 1169.56 and 429.12 µmol g-1 h-1, respectively. This superior photocatalytic performance is attributed to the unique S-Scheme photogenerated charge transfer mechanism between CeO2 and CN, which facilitates rapid charge separation and migration, while retaining the excellent redox capacity of both semiconductors. Particularly, the variable valence Ce3+/Ce4+ can act as electron mediator between CeO2 and CN, which can promote electron transfer and improve the catalytic performance. This work is expected to provide a new useful reference for the rational construction of high efficiency S-Scheme heterojunction photocatalyst, and improve the efficiency of photocatalytic reduction of CO2, promoting the photocatalytic reduction of CO2 into useful fuels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA