Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Pathog ; 155: 104897, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33878399

RESUMEN

Klebsiella pneumoniae is an opportunistic pathogen commonly associated with nosocomial infections. In our previous study, we have demonstrated that colistin-resistant K. pneumoniae is more susceptible to killing by lytic tailed phages than the colistin-sensitive parent strain, including T1-like ФNJS1. This fitness cost associated with colistin resistance is due to the alteration of the surface charge that promotes phage adherence and infection. However, the receptor for phage adsorption has not been identified. In this study, we found that ФNJS1 specifically infected nonmucoid K. pneumoniae isolates, and the accelerated phage adsorption to colistin-resistant nonmucoid K. pneumoniae cells is reversible. Further research suggested that bacteria lipopolysaccharide may be involved in phage reversible adsorption, while capsule polysaccharide may block the receptors on cell surface from phage attachment. Transposon mutagenesis of colistin-resistant K. pneumoniae revealed that mutation in wecA and wecG, two genes involved in lipopolysaccharide O-antigen biosynthesis, significantly deceased phage adsorption capacity and infection efficiency. Inactivation of wzyE, which leaded to the shorten of O-antigen chain length, enhanced phage infectivity. Moreover, mutation of the outer membrane protein FepA slowed the phage lysis rate, suggesting that FepA may be an irreversible receptor for ФNJS1. In summary, our results show a delicate balance between ФNJS1 and its hosts, where the lipopolysaccharide O-antigen may serve as an essential reversible receptor for phage NJS1, while the long O-antigen chain hinders the bacteriophage infection.


Asunto(s)
Bacteriófagos , Infecciones por Klebsiella , Bacteriófagos/genética , Colistina , Humanos , Klebsiella pneumoniae , Mutagénesis , Antígenos O
2.
PLoS Pathog ; 14(10): e1007413, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30376582

RESUMEN

Bacterial pathogens are highly adaptable organisms, a quality that enables them to overcome changing hostile environments. For example, Vibrio cholerae, the causative agent of cholera, is able to colonize host small intestines and combat host-produced reactive oxygen species (ROS) during infection. To dissect the molecular mechanisms utilized by V. cholerae to overcome ROS in vivo, we performed a whole-genome transposon sequencing analysis (Tn-seq) by comparing gene requirements for colonization using adult mice with and without the treatment of the antioxidant, N-acetyl cysteine. We found that mutants of the methyl-directed mismatch repair (MMR) system, such as MutS, displayed significant colonization advantages in untreated, ROS-rich mice, but not in NAC-treated mice. Further analyses suggest that the accumulation of both catalase-overproducing mutants and rugose colony variants in NAC- mice was the leading cause of mutS mutant enrichment caused by oxidative stress during infection. We also found that rugose variants could revert back to smooth colonies upon aerobic, in vitro culture. Additionally, the mutation rate of wildtype colonized in NAC- mice was significantly higher than that in NAC+ mice. Taken together, these findings support a paradigm in which V. cholerae employs a temporal adaptive strategy to battle ROS during infection, resulting in enriched phenotypes. Moreover, ΔmutS passage and complementation can be used to model hypermuation in diverse pathogens to identify novel stress resistance mechanisms.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Cólera/microbiología , Interacciones Huésped-Patógeno , Intestinos/microbiología , Mutación , Estrés Oxidativo , Vibrio cholerae/genética , Adaptación Fisiológica , Animales , Catalasa/metabolismo , Cólera/genética , Cólera/patología , Ratones , Especies Reactivas de Oxígeno/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA