Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2320468121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768356

RESUMEN

Spontaneous gain or loss of DNA methylation occurs in plant and animal genomes, and DNA methylation changes can lead to meiotically stable epialleles that generate heritable phenotypic diversity. However, it is unclear whether transgenerational epigenetic stability may be regulated by any cellular factors. Here, we examined spontaneously occurring variations in DNA methylation in wild-type and ros1 mutant Arabidopsis plants that were propagated for ten generations from single-seed descent. We found that the ros1 mutant, which is defective in active DNA demethylation, showed an increased transgenerational epimutation rate. The ros1 mutation led to more spontaneously gained methylation than lost methylation at individual cytosines, compared to the wild type which had similar numbers of spontaneously gained and lost methylation cytosines. Consistently, transgenerational differentially methylated regions were also biased toward hypermethylation in the ros1 mutant. Our results reveal a genetic contribution of the ROS1 DNA demethylase to transgenerational epigenetic stability and suggest that ROS1 may have an unexpected surveillance function in preventing transgenerational DNA methylation increases.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Desmetilación del ADN , Metilación de ADN , Epigénesis Genética , Mutación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , ADN de Plantas/genética , ADN de Plantas/metabolismo , Proteínas Nucleares
2.
Mol Cell ; 69(1): 100-112.e6, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290610

RESUMEN

As sessile organisms, plants must adapt to variations in the environment. Environmental stress triggers various responses, including growth inhibition, mediated by the plant hormone abscisic acid (ABA). The mechanisms that integrate stress responses with growth are poorly understood. Here, we discovered that the Target of Rapamycin (TOR) kinase phosphorylates PYL ABA receptors at a conserved serine residue to prevent activation of the stress response in unstressed plants. This phosphorylation disrupts PYL association with ABA and with PP2C phosphatase effectors, leading to inactivation of SnRK2 kinases. Under stress, ABA-activated SnRK2s phosphorylate Raptor, a component of the TOR complex, triggering TOR complex dissociation and inhibition. Thus, TOR signaling represses ABA signaling and stress responses in unstressed conditions, whereas ABA signaling represses TOR signaling and growth during times of stress. Plants utilize this conserved phospho-regulatory feedback mechanism to optimize the balance of growth and stress responses.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal , Estrés Fisiológico
3.
BMC Genomics ; 25(1): 223, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424499

RESUMEN

BACKGROUND: Switchgrass (Panicum virgatum L.) is a warm-season perennial (C4) grass identified as an important biofuel crop in the United States. It is well adapted to the marginal environment where heat and moisture stresses predominantly affect crop growth. However, the underlying molecular mechanisms associated with heat and drought stress tolerance still need to be fully understood in switchgrass. The methylation of H3K4 is often associated with transcriptional activation of genes, including stress-responsive. Therefore, this study aimed to analyze genome-wide histone H3K4-tri-methylation in switchgrass under heat, drought, and combined stress. RESULTS: In total, ~ 1.3 million H3K4me3 peaks were identified in this study using SICER. Among them, 7,342; 6,510; and 8,536 peaks responded under drought (DT), drought and heat (DTHT), and heat (HT) stresses, respectively. Most DT and DTHT peaks spanned 0 to + 2000 bases from the transcription start site [TSS]. By comparing differentially marked peaks with RNA-Seq data, we identified peaks associated with genes: 155 DT-responsive peaks with 118 DT-responsive genes, 121 DTHT-responsive peaks with 110 DTHT-responsive genes, and 175 HT-responsive peaks with 136 HT-responsive genes. We have identified various transcription factors involved in DT, DTHT, and HT stresses. Gene Ontology analysis using the AgriGO revealed that most genes belonged to biological processes. Most annotated peaks belonged to metabolite interconversion, RNA metabolism, transporter, protein modifying, defense/immunity, membrane traffic protein, transmembrane signal receptor, and transcriptional regulator protein families. Further, we identified significant peaks associated with TFs, hormones, signaling, fatty acid and carbohydrate metabolism, and secondary metabolites. qRT-PCR analysis revealed the relative expressions of six abiotic stress-responsive genes (transketolase, chromatin remodeling factor-CDH3, fatty-acid desaturase A, transmembrane protein 14C, beta-amylase 1, and integrase-type DNA binding protein genes) that were significantly (P < 0.05) marked during drought, heat, and combined stresses by comparing stress-induced against un-stressed and input controls. CONCLUSION: Our study provides a comprehensive and reproducible epigenomic analysis of drought, heat, and combined stress responses in switchgrass. Significant enrichment of H3K4me3 peaks downstream of the TSS of protein-coding genes was observed. In addition, the cost-effective experimental design, modified ChIP-Seq approach, and analyses presented here can serve as a prototype for other non-model plant species for conducting stress studies.


Asunto(s)
Panicum , Panicum/metabolismo , Calor , Lisina/metabolismo , Histonas/metabolismo , Sequías , Estrés Fisiológico/genética , Metilación , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
4.
FASEB J ; 37(3): e22785, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36794668

RESUMEN

The epigenome of stem cells occupies a critical interface between genes and environment, serving to regulate expression through modification by intrinsic and extrinsic factors. We hypothesized that aging and obesity, which represent major risk factors for a variety of diseases, synergistically modify the epigenome of adult adipose stem cells (ASCs). Using integrated RNA- and targeted bisulfite-sequencing in murine ASCs from lean and obese mice at 5- and 12-months of age, we identified global DNA hypomethylation with either aging or obesity, and a synergistic effect of aging combined with obesity. The transcriptome of ASCs in lean mice was relatively stable to the effects of age, but this was not true in obese mice. Functional pathway analyses identified a subset of genes with critical roles in progenitors and in diseases of obesity and aging. Specifically, Mapt, Nr3c2, App, and Ctnnb1 emerged as potential hypomethylated upstream regulators in both aging and obesity (AL vs. YL and AO vs. YO), and App, Ctnnb1, Hipk2, Id2, and Tp53 exhibited additional effects of aging in obese animals. Furthermore, Foxo3 and Ccnd1 were potential hypermethylated upstream regulators of healthy aging (AL vs. YL), and of the effects of obesity in young animals (YO vs. YL), suggesting that these factors could play a role in accelerated aging with obesity. Finally, we identified candidate driver genes that appeared recurrently in all analyses and comparisons undertaken. Further mechanistic studies are needed to validate the roles of these genes capable of priming ASCs for dysfunction in aging- and obesity-associated pathologies.


Asunto(s)
Tejido Adiposo , Epigenoma , Animales , Ratones , Tejido Adiposo/metabolismo , Transcriptoma , Ratones Obesos , Obesidad/metabolismo , Células Madre/metabolismo
5.
BMC Plant Biol ; 22(1): 107, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260072

RESUMEN

BACKGROUND: Sustainable production of high-quality feedstock has been of great interest in bioenergy research. Despite the economic importance, high temperatures and water deficit are limiting factors for the successful cultivation of switchgrass in semi-arid areas. There are limited reports on the molecular basis of combined abiotic stress tolerance in switchgrass, particularly the combination of drought and heat stress. We used transcriptomic approaches to elucidate the changes in the response of switchgrass to drought and high temperature simultaneously. RESULTS: We conducted solely drought treatment in switchgrass plant Alamo AP13 by withholding water after 45 days of growing. For the combination of drought and heat effect, heat treatment (35 °C/25 °C day/night) was imposed after 72 h of the initiation of drought. Samples were collected at 0 h, 72 h, 96 h, 120 h, 144 h, and 168 h after treatment imposition, total RNA was extracted, and RNA-Seq conducted. Out of a total of 32,190 genes, we identified 3912, as drought (DT) responsive genes, 2339 and 4635 as, heat (HT) and drought and heat (DTHT) responsive genes, respectively. There were 209, 106, and 220 transcription factors (TFs) differentially expressed under DT, HT and DTHT respectively. Gene ontology annotation identified the metabolic process as the significant term enriched in DTHT genes. Other biological processes identified in DTHT responsive genes included: response to water, photosynthesis, oxidation-reduction processes, and response to stress. KEGG pathway enrichment analysis on DT and DTHT responsive genes revealed that TFs and genes controlling phenylpropanoid pathways were important for individual as well as combined stress response. For example, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) from the phenylpropanoid pathway was induced by single DT and combinations of DTHT stress. CONCLUSION: Through RNA-Seq analysis, we have identified unique and overlapping genes in response to DT and combined DTHT stress in switchgrass. The combination of DT and HT stress may affect the photosynthetic machinery and phenylpropanoid pathway of switchgrass which negatively impacts lignin synthesis and biomass production of switchgrass. The biological function of genes identified particularly in response to DTHT stress could further be confirmed by techniques such as single point mutation or RNAi.


Asunto(s)
Adaptación Fisiológica/genética , Deshidratación/genética , Respuesta al Choque Térmico/genética , Panicum/genética , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
6.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34768928

RESUMEN

The Hessian fly is a destructive pest of wheat. Employing additional molecular strategies can complement wheat's native insect resistance. However, this requires functional characterization of Hessian-fly-responsive genes, which is challenging because of wheat genome complexity. The diploid Brachypodium distachyon (Bd) exhibits nonhost resistance to Hessian fly and displays phenotypic/molecular responses intermediate between resistant and susceptible host wheat, offering a surrogate genome for gene characterization. Here, we compared the transcriptomes of Biotype L larvae residing on resistant/susceptible wheat, and nonhost Bd plants. Larvae from susceptible wheat and nonhost Bd plants revealed similar molecular responses that were distinct from avirulent larval responses on resistant wheat. Secreted salivary gland proteins were strongly up-regulated in all larvae. Genes from various biological pathways and molecular processes were up-regulated in larvae from both susceptible wheat and nonhost Bd plants. However, Bd larval expression levels were intermediate between larvae from susceptible and resistant wheat. Most genes were down-regulated or unchanged in avirulent larvae, correlating with their inability to establish feeding sites and dying within 4-5 days after egg-hatch. Decreased gene expression in Bd larvae, compared to ones on susceptible wheat, potentially led to developmentally delayed 2nd-instars, followed by eventually succumbing to nonhost resistance defense mechanisms.


Asunto(s)
Brachypodium/inmunología , Resistencia a la Enfermedad/genética , Nematocera/genética , Triticum/inmunología , Animales , Perfilación de la Expresión Génica , Genoma/genética , Larva/genética , Nematocera/embriología , RNA-Seq , Transcriptoma/genética , Virulencia/genética
7.
BMC Genomics ; 21(1): 888, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33308144

RESUMEN

BACKGROUND: Voice disorders are a worldwide problem impacting human health, particularly for occupational voice users. Avoidance of surface dehydration is commonly prescribed as a protective factor against the development of dysphonia. The available literature inconclusively supports this practice and a biological mechanism for how surface dehydration of the laryngeal tissue affects voice has not been described. In this study, we used an in vivo male New Zealand white rabbit model to elucidate biological changes based on gene expression within the vocal folds from surface dehydration. Surface dehydration was induced by exposure to low humidity air (18.6% + 4.3%) for 8 h. Exposure to moderate humidity (43.0% + 4.3%) served as the control condition. Ilumina-based RNA sequencing was performed and used for transcriptome analysis with validation by RT-qPCR. RESULTS: There were 103 statistically significant differentially expressed genes identified through Cuffdiff with 61 genes meeting significance by both false discovery rate and fold change. Functional annotation enrichment and predicted protein interaction mapping showed enrichment of various loci, including cellular stress and inflammatory response, ciliary function, and keratinocyte development. Eight genes were selected for RT-qPCR validation. Matrix metalloproteinase 12 (MMP12) and macrophage cationic peptide 1 (MCP1) were significantly upregulated and an epithelial chloride channel protein (ECCP) was significantly downregulated after surface dehydration by RNA-Seq and RT-qPCR. Suprabasin (SPBN) and zinc activated cationic channel (ZACN) were marginally, but non-significantly down- and upregulated as evidenced by RT-qPCR, respectively. CONCLUSIONS: The data together support the notion that surface dehydration induces physiological changes in the vocal folds and justifies targeted analysis to further explore the underlying biology of compensatory fluid/ion flux and inflammatory mediators in response to airway surface dehydration.


Asunto(s)
Laringe , Animales , Perfilación de la Expresión Génica , Humedad , Masculino , Conejos , Análisis de Secuencia de ARN , Pliegues Vocales
8.
PLoS Genet ; 13(12): e1007124, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29232718

RESUMEN

Several nucleoporins in the nuclear pore complex (NPC) have been reported to be involved in abiotic stress responses in plants. However, the molecular mechanism of how NPC regulates abiotic stress responses, especially the expression of stress responsive genes remains poorly understood. From a forward genetics screen using an abiotic stress-responsive luciferase reporter (RD29A-LUC) in the sickle-1 (sic-1) mutant background, we identified a suppressor caused by a mutation in NUCLEOPORIN 85 (NUP85), which exhibited reduced expression of RD29A-LUC in response to ABA and salt stress. Consistently, the ABA and salinity induced expression of several stress responsive genes such as RD29A, COR15A and COR47 was significantly compromised in nup85 mutants and other nucleoporin mutants such as nup160 and hos1. Subsequently, Immunoprecipitation and mass spectrometry analysis revealed that NUP85 is potentially associated with HOS1 and other nucleoporins within the nup107-160 complex, along with several mediator subunits. We further showed that there is a direct physical interaction between MED18 and NUP85. Similar to NUP85 mutations, MED18 mutation was also found to attenuate expression of stress responsive genes. Taken together, we not only revealed the involvement of NUP85 and other nucleoporins in regulating ABA and salt stress responses, but also uncovered a potential relation between NPC and mediator complex in modulating the gene expression in plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Complejo Poro Nuclear/genética , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética , Ácido Abscísico/toxicidad , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular/genética , Complejo Mediador/genética , Mutación , Proteínas de Complejo Poro Nuclear/biosíntesis , Proteínas Nucleares/genética , Presión Osmótica , Salinidad
9.
Bioinformatics ; 34(4): 708-709, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29087450

RESUMEN

Motivation: High throughput bisulfite sequencing (BS-seq) is an important technology to generate single-base DNA methylomes in both plants and animals. In order to accelerate the data analysis of BS-seq data, toolkits for visualization are required. Results: ViewBS, an open-source toolkit, can extract and visualize the DNA methylome data easily and with flexibility. By using Tabix, ViewBS can visualize BS-seq for large datasets quickly. ViewBS can generate publication-quality figures, such as meta-plots, heat maps and violin-boxplots, which can help users to answer biological questions. We illustrate its application using BS-seq data from Arabidopsis thaliana. Availability: ViewBS is freely available at: https://github.com/xie186/ViewBS. Contact: xie186@purdue.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metilación de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Animales , Plantas/genética , Plantas/metabolismo , Sulfitos
10.
PLoS Genet ; 12(3): e1005835, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26943172

RESUMEN

The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fosfoproteínas Fosfatasas/genética , Proteína Fosfatasa 1/genética , Ácido Abscísico/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 1/biosíntesis , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Transducción de Señal
11.
Proc Natl Acad Sci U S A ; 112(11): 3553-7, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733903

RESUMEN

De novo DNA methylation through the RNA-directed DNA methylation (RdDM) pathway and active DNA demethylation play important roles in controlling genome-wide DNA methylation patterns in plants. Little is known about how cells manage the balance between DNA methylation and active demethylation activities. Here, we report the identification of a unique RdDM target sequence, where DNA methylation is required for maintaining proper active DNA demethylation of the Arabidopsis genome. In a genetic screen for cellular antisilencing factors, we isolated several REPRESSOR OF SILENCING 1 (ros1) mutant alleles, as well as many RdDM mutants, which showed drastically reduced ROS1 gene expression and, consequently, transcriptional silencing of two reporter genes. A helitron transposon element (TE) in the ROS1 gene promoter negatively controls ROS1 expression, whereas DNA methylation of an RdDM target sequence between ROS1 5' UTR and the promoter TE region antagonizes this helitron TE in regulating ROS1 expression. This RdDM target sequence is also targeted by ROS1, and defective DNA demethylation in loss-of-function ros1 mutant alleles causes DNA hypermethylation of this sequence and concomitantly causes increased ROS1 expression. Our results suggest that this sequence in the ROS1 promoter region serves as a DNA methylation monitoring sequence (MEMS) that senses DNA methylation and active DNA demethylation activities. Therefore, the ROS1 promoter functions like a thermostat (i.e., methylstat) to sense DNA methylation levels and regulates DNA methylation by controlling ROS1 expression.


Asunto(s)
Arabidopsis/genética , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética , Secuencia de Bases , Cruzamientos Genéticos , Silenciador del Gen , Proteínas de Transporte de Membrana/genética , Mutación/genética , Proteínas Nucleares/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , ARN de Planta/metabolismo , Transgenes
12.
Plant J ; 87(6): 629-40, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27231839

RESUMEN

As a central component in the maturation of Okazaki fragments, flap endonuclease 1 (FEN1) removes the 5'-flap and maintains genomic stability. Here, FEN1 was cloned as a suppressor of transcriptional gene silencing (TGS) from a forward genetic screen. FEN1 is abundant in the root and shoot apical meristems and FEN1-GFP shows a nucleolus-localized signal in tobacco cells. The Arabidopsis fen1-1 mutant is hypersensitive to methyl methanesulfonate and shows reduced telomere length. Interestingly, genome-wide chromatin immunoprecipitation and RNA sequencing results demonstrate that FEN1 mutation leads to a decrease in the level of H3K27me3 and an increase in the expression of a subset of genes marked with H3K27me3. Overall, these results uncover a role for FEN1 in mediating TGS as well as maintaining genome stability in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Endonucleasas de ADN Solapado/genética , Silenciador del Gen , Inestabilidad Genómica , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Clonación Molecular , Endonucleasas de ADN Solapado/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Histonas/metabolismo , Metilmetanosulfonato/farmacología , Mutación , Proteínas Nucleares/genética , Plantas Modificadas Genéticamente , Telómero
13.
Plant J ; 88(5): 854-866, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27531446

RESUMEN

The inheritance and function of centromeres are not strictly dependent on any specific DNA sequence, but involve an epigenetic component in most species. CENH3, a centromere histone H3 variant, is one of the best-described epigenetic factors in centromere identity, but the chromatin features required during centromere formation have not yet been revealed. We previously identified two de novo centromeres on Zea mays (maize) minichromosomes derived from euchromatic sites with high-density gene distributions but low-density transposon distributions. The distribution of gene location and gene expression in these sites indicates that transcriptionally active regions can initiate de novo centromere formation, and CENH3 seeding shows a preference for gene-free regions or regions with no gene expression. The locations of the expressed genes detected were at relatively hypomethylated loci, and the altered gene expression resulted from de novo centromere formation, but not from the additional copy of the minichromosome. The initial overall DNA methylation level of the two de novo regions was at a low level, but increased substantially to that of native centromeres after centromere formation. These results illustrate the dynamic chromatin changes during euchromatin-originated de novo centromere formation, which provides insight into the mechanism of de novo centromere formation and regulation of subsequent consequences.


Asunto(s)
Centrómero/metabolismo , Cromatina/metabolismo , Eucromatina/metabolismo , Zea mays/metabolismo , Metilación de ADN/genética , Eucromatina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética
14.
BMC Genomics ; 18(1): 851, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29115936

RESUMEN

BACKGROUND: Switchgrass is a crop with many desirable traits for bioenergy production. Plant genomes have high DNA methylation levels throughout genes and transposable elements and DNA methylation is known to play a role in silencing transposable elements. Here we analyzed methylomes in two switchgrass genotypes AP13 and VS16. AP13 is derived from a lowland ecotype and VS16, typically considered drought-tolerant, is derived from an upland ecotype, both genotypes are tetraploid (2n = 4× = 36). RESULTS: Methylated DNA immunoprecipitation-sequencing (MeDIP-seq) and bisulfite-sequencing (BS-seq) were used to profile DNA methylation in genomic features of AP13 and VS16. The methylation patterns in genes and transposable elements were similar to other plants, however, overall CHH methylation levels were comparatively low. Differentially methylated regions (DMRs) were assessed and a total of 1777 CG-DMRs, 573 CHG-DMRs, and 3 CHH-DMRs were detected between the two genotypes. TEs and their flanking regions were higher than that of genic regions. Different types of TEs had different methylation patterns, but the two LTRs (Copia and Gypsy) were similarly methylated, while LINEs and DNA transposons typically had different methylation patterns. MeDIP-seq data was compared to BS-seq data and most of the peaks generated by MeDIP-seq were confirmed to be highly methylated by BS-seq. CONCLUSIONS: DNA methylation in switchgrass genotypes obtained from the two ecotypes were found similar. Collinear gene pairs in two subgenomes (A and B) were not significantly differentially methylated. Both BS-seq and MeDIP-seq methodologies were found effective. Methylation levels were highest at CG and least in CHH. Increased DNA methylation was seen in TEs compared to genic regions. Exploitation of TE methylations can be a viable option in future crop improvement.


Asunto(s)
Metilación de ADN/genética , Ecotipo , Genómica , Panicum/genética , Análisis de Secuencia de ADN
15.
Genome Res ; 24(1): 167-76, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24131563

RESUMEN

Genetic imprinting is a specific epigenetic phenomenon in which a subset of genes is expressed depending on their parent-of-origin. Two types of chromatin modifications, DNA methylation and histone modification, are generally believed to be involved in the regulation of imprinting. However, the genome-wide correlation between allele-specific chromatin modifications and imprinted gene expression in maize remains elusive. Here we report genome-wide high resolution allele-specific maps of DNA methylation and histone H3 lysine 27 trimethylation (H3K27me3) in maize endosperm. For DNA methylation, thousands of parent-of-origin dependent differentially methylated regions (pDMRs) were identified. All pDMRs were uniformly paternally hypermethylated and maternally hypomethylated. We also identified 1131 allele-specific H3K27me3 peaks that are preferentially present in the maternal alleles. Maternally expressed imprinted genes (MEGs) and paternally expressed imprinted genes (PEGs) had different patterns of allele-specific DNA methylation and H3K27me3. Allele-specific expression of MEGs was not directly related to allele-specific H3K27me3, and only a subset of MEGs was associated with maternal-specific DNA demethylation, which was primarily located in the upstream and 5' portion of gene body regions. In contrast, allele-specific expression of a majority of PEGs was related to maternal-specific H3K27me3, with a subgroup of PEGs also associated with maternal-specific DNA demethylation. Both pDMRs and maternal H3K27me3 peaks associated with PEGs are enriched in gene body regions. Our results indicate highly complex patterns of regulation on genetic imprinting in maize endosperm.


Asunto(s)
ADN de Plantas/genética , Endospermo/genética , Histonas/metabolismo , Zea mays/genética , Alelos , Endospermo/metabolismo , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Impresión Genómica , Histonas/genética , Metilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/metabolismo
16.
Plant Physiol ; 171(4): 2744-59, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27252305

RESUMEN

The three tandemly arranged CBF genes, CBF1, CBF2, and CBF3, are involved in cold acclimation. Due to the lack of stable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants deficient in all three CBF genes, it is still unclear whether the CBF genes are essential for freezing tolerance and whether they may have other functions besides cold acclimation. In this study, we used the CRISPR/Cas9 system to generate cbf single, double, and triple mutants. Compared to the wild type, the cbf triple mutants are extremely sensitive to freezing after cold acclimation, demonstrating that the three CBF genes are essential for cold acclimation. Our results show that the three CBF genes also contribute to basal freezing tolerance. Unexpectedly, we found that the cbf triple mutants are defective in seedling development and salt stress tolerance. Transcript profiling revealed that the CBF genes regulate 414 cold-responsive (COR) genes, of which 346 are CBF-activated genes and 68 are CBF-repressed genes. The analysis suggested that CBF proteins are extensively involved in the regulation of carbohydrate and lipid metabolism, cell wall modification, and gene transcription. Interestingly, like the triple mutants, cbf2 cbf3 double mutants are more sensitive to freezing after cold acclimation compared to the wild type, but cbf1 cbf3 double mutants are more resistant, suggesting that CBF2 is more important than CBF1 and CBF3 in cold acclimation-dependent freezing tolerance. Our results not only demonstrate that the three CBF genes together are required for cold acclimation and freezing tolerance, but also reveal that they are important for salt tolerance and seedling development.


Asunto(s)
Aclimatación/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Frío , Mutación/genética , Factores de Transcripción/metabolismo , Aclimatación/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Congelación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Germinación/efectos de los fármacos , Germinación/genética , Presión Osmótica/efectos de los fármacos , Fenotipo , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/genética
17.
Plant Physiol ; 171(2): 1192-208, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208288

RESUMEN

DNA polymerase δ plays crucial roles in DNA repair and replication as well as maintaining genomic stability. However, the function of POLD2, the second small subunit of DNA polymerase δ, has not been characterized yet in Arabidopsis (Arabidopsis thaliana). During a genetic screen for release of transcriptional gene silencing, we identified a mutation in POLD2. Whole-genome bisulfite sequencing indicated that POLD2 is not involved in the regulation of DNA methylation. POLD2 genetically interacts with Ataxia Telangiectasia-mutated and Rad3-related and DNA polymerase α The pold2-1 mutant exhibits genomic instability with a high frequency of homologous recombination. It also exhibits hypersensitivity to DNA-damaging reagents and short telomere length. Whole-genome chromatin immunoprecipitation sequencing and RNA sequencing analyses suggest that pold2-1 changes H3K27me3 and H3K4me3 modifications, and these changes are correlated with the gene expression levels. Our study suggests that POLD2 is required for maintaining genome integrity and properly establishing the epigenetic markers during DNA replication to modulate gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , ADN Polimerasa III/metabolismo , Epigénesis Genética , Inestabilidad Genómica , Subunidades de Proteína/metabolismo , Arabidopsis/citología , Ciclo Celular/genética , Clonación Molecular , Metilación de ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Histonas/metabolismo , Recombinación Homóloga/genética , Mutación/genética , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Telómero/metabolismo
18.
Plant Cell ; 26(6): 2660-2675, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24920332

RESUMEN

In Arabidopsis thaliana, active DNA demethylation is initiated by the DNA glycosylase REPRESSOR OF SILENCING1 (ROS1) and its paralogs DEMETER, DEMETER-LIKE2 (DML2), and DML3. How these demethylation enzymes are regulated, however, is poorly understood. Here, using a transgenic Arabidopsis line harboring the stress-inducible RESPONSIVE TO DEHYDRATION29A (RD29A) promoter-LUCIFERASE (LUC) reporter gene and the cauliflower mosaic virus 35S promoter (35S)-NEOMYCIN PHOSPHOTRANSFERASE II (NPTII) antibiotic resistance marker gene, we characterize a ROS locus, ROS5, that encodes a protein in the small heat shock protein family. ROS5 mutations lead to the silencing of the 35S-NPTII transgene due to DNA hypermethylation but do not affect the expression of the RD29A-LUC transgene. ROS5 physically interacts with the histone acetyltransferase ROS4/INCREASED DNA METHYLATION1 (IDM1) and is required to prevent the DNA hypermethylation of some genes that are also regulated by ROS1 and IDM1. We propose that ROS5 regulates DNA demethylation by interacting with IDM1, thereby creating a chromatin environment that facilitates the binding of ROS1 to erase DNA methylation.

19.
Plant J ; 84(6): 1206-18, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26568274

RESUMEN

Plants can respond to environmental changes with various mechanisms occurred at transcriptional and translational levels. Thus far, there have been relatively extensive understandings of stress responses of plants on transcriptional level, while little information is known about that on translational level. To uncover the landscape of translation in plants in response to drought stress, we performed the recently developed ribosome profiling assay with maize seedlings growing under normal and drought conditions. Comparative analysis of the ribosome profiling data and the RNA-seq data showed that the fold changes of gene expression at transcriptional level were moderately correlated with that of translational level globally (R(2) = 0.69). However, less than half of the responsive genes were shared by transcription and translation under drought condition, suggesting that drought stress can introduce transcriptional and translational responses independently. We found that the translational efficiencies of 931 genes were changed significantly in response to drought stress. Further analysis revealed that the translational efficiencies of genes were highly influenced by their sequence features including GC content, length of coding sequences and normalized minimal free energy. In addition, we detected potential translation of 3063 upstream open reading frames (uORFs) on 2558 genes and these uORFs may affect the translational efficiency of downstream main open reading frames (ORFs). Our study indicates that plant can respond to drought stress with highly dynamic translational mechanism, that acting synergistically with that of transcription.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Ribosomas/metabolismo , Plantones/metabolismo , Transcriptoma , Agua , Zea mays/metabolismo , Biosíntesis de Proteínas , Ribosomas/genética , Plantones/genética , Transcripción Genética , Zea mays/genética
20.
Plant Physiol ; 167(3): 905-14, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25593350

RESUMEN

Although researchers have established that DNA methylation and active demethylation are dynamically regulated in plant cells, the molecular mechanism for the regulation of active DNA demethylation is not well understood. By using an Arabidopsis (Arabidopsis thaliana) line expressing the Promoter RESPONSIVE TO DEHYDRATION 29A:LUCIFERASE (ProRD29A:LUC) and Promoter cauliflower mosaic virus 35S:NEOMYCIN PHOSPHOTRANSFERASE II (Pro35S:NPTII) transgenes, we isolated an mbd7 (for methyl-CpG-binding domain protein7) mutant. The mbd7 mutation causes an inactivation of the Pro35S:NPTII transgene but does not affect the expression of the ProRD29A:LUC transgene. The silencing of the Pro35S:NPTII reporter gene is associated with DNA hypermethylation of the reporter gene. MBD7 interacts physically with REPRESSOR OF SILENCING5/INCREASED DNA METHYLATION2, a protein in the small heat shock protein family. MBD7 prefers to target the genomic loci with high densities of DNA methylation around chromocenters. The Gypsy-type long terminal repeat retrotransposons mainly distributed around chromocenters are most affected by mbd7 in all transposons. Our results suggest that MBD7 is required for active DNA demethylation and antisilencing of the genomic loci with high densities of DNA methylation in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/metabolismo , Secuencia de Bases , Clonación Molecular , Genoma de Planta , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA