Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Med ; 20(1): 361, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36192722

RESUMEN

BACKGROUND: Birth weight is considered not only to undermine future growth, but also to induce lifelong diseases; the aim of this study is to explore the relationship between birth weight and adult bone mass. METHODS: We performed multivariable regression analyses to assess the association of birth weight with bone parameters measured by dual-energy X-ray absorptiometry (DXA) and by quantitative ultrasound (QUS), independently. We also implemented a systemic Mendelian randomization (MR) analysis to explore the causal association between them with both fetal-specific and maternal-specific instrumental variables. RESULTS: In the observational analyses, we found that higher birth weight could increase the adult bone area (lumbar spine, ß-coefficient= 0.17, P < 2.00 × 10-16; lateral spine, ß-coefficient = 0.02, P = 0.04), decrease bone mineral content-adjusted bone area (BMCadjArea) (lumbar spine, ß-coefficient= - 0.01, P = 2.27 × 10-14; lateral spine, ß-coefficient = - 0.05, P = 0.001), and decrease adult bone mineral density (BMD) (lumbar spine, ß-coefficient = - 0.04, P = 0.007; lateral spine; ß-coefficient = - 0.03, P = 0.02; heel, ß-coefficient = - 0.06, P < 2.00 × 10-16), and we observed that the effect of birth weight on bone size was larger than that on BMC. In MR analyses, the higher fetal-specific genetically determined birth weight was identified to be associated with higher bone area (lumbar spine; ß-coefficient = 0.15, P = 1.26 × 10-6, total hip, ß-coefficient = 0.15, P = 0.005; intertrochanteric area, ß-coefficient = 0.13, P = 0.0009; trochanter area, ß-coefficient = 0.11, P = 0.03) but lower BMD (lumbar spine, ß-coefficient = - 0.10, P = 0.01; lateral spine, ß-coefficient = - 0.12, P = 0.0003, and heel ß-coefficient = - 0.11, P = 3.33 × 10-13). In addition, we found that the higher maternal-specific genetically determined offspring birth weight was associated with lower offspring adult heel BMD (ß-coefficient = - 0.001, P = 0.04). CONCLUSIONS: The observational analyses suggested that higher birth weight was associated with the increased adult bone area but decreased BMD. By leveraging the genetic instrumental variables with maternal- and fetal-specific effects on birth weight, the observed relationship could be reflected by both the direct fetal and indirect maternal genetic effects.


Asunto(s)
Densidad Ósea , Vértebras Lumbares , Absorciometría de Fotón , Adulto , Peso al Nacer , Densidad Ósea/genética , Humanos , Vértebras Lumbares/diagnóstico por imagen , Análisis de la Aleatorización Mendeliana
2.
Ann Rheum Dis ; 79(11): 1460-1467, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32737104

RESUMEN

OBJECTIVES AND METHODS: With 432 513 samples from UK Biobank dataset, multivariable linear/logistic regression were used to estimate the relationship between psoriasis/psoriatic arthritis (PsA) and estimated bone mineral density (eBMD)/osteoporosis, controlling for potential confounders. Here, confounders were set in three ways: model0 (including age, height, weight, smoking and drinking), model1 (model0 +regular physical activity) and model2 (model1 +medication treatments). The eBMD was derived from heel ultrasound measurement. And 4904 patients with psoriasis and 847 patients with PsA were included in final analysis. Mendelian randomisation (MR) approach was used to evaluate the causal effect between them. RESULTS: Lower eBMD were observed in patients with PsA than in controls in both model0 (ß-coefficient=-0.014, p=0.0006) and model1 (ß-coefficient=-0.013, p=0.002); however, the association disappeared when conditioning on treatment with methotrexate or ciclosporin (model2) (ß-coefficient=-0.005, p=0.28), mediation analysis showed that 63% of the intermediary effect on eBMD was mediated by medication treatment (p<2E-16). Patients with psoriasis without arthritis showed no difference of eBMD compared with controls. Similarly, the significance of higher risk of osteopenia in patients with PsA (OR=1.27, p=0.002 in model0) could be eliminated by conditioning on medication treatment (p=0.244 in model2). Psoriasis without arthritis was not related to osteopenia and osteoporosis. The weighted Genetic Risk Score analysis found that genetically determined psoriasis/PsA were not associated with eBMD (p=0.24 and p=0.88). Finally, MR analysis showed that psoriasis/PsA had no causal effect on eBMD, osteoporosis and fracture. CONCLUSIONS: The effect of PsA on osteoporosis was secondary (eg, medication) but not causal. Under this hypothesis, psoriasis without arthritis was not a risk factor for osteoporosis.


Asunto(s)
Antirreumáticos/uso terapéutico , Densidad Ósea/efectos de los fármacos , Osteoporosis/epidemiología , Psoriasis/complicaciones , Psoriasis/tratamiento farmacológico , Humanos , Análisis de la Aleatorización Mendeliana
3.
Fish Shellfish Immunol ; 98: 354-363, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31945483

RESUMEN

L-type lectins (LTLs) belong to the lectin family and are characterized by a conserved structural motif in their carbohydrate recognition domain. LTLs are homologous to leguminous lectins. In this study, we identified and functionally characterized an LTL from kuruma shrimp Marsupenaeus japonicus. We designated this LTL as MjLTL2. MjLTL2 contains a signal peptide, a Lectin_leg domain, a coiled coil, and transmembrane domain. MjLTL2 is distributed in hemocytes, heart, hepatopancreas, gill, stomach, and intestine; higher expression levels are seen in hemocytes and the hepatopancreas than in other tissues. MjLTL2 was upregulated following challenge of shrimp with Vibrio anguillarum and white spot syndrome virus (WSSV). MjLTL2 can agglutinate several bacteria without Ca2+. In addition, MjLTL2 could bind to several Gram-positive and -negative bacteria by binding to their lipopolysaccharide and peptidoglycan. However, MjLTL2 could not enhance the clearance of V. anguillarum in vivo. In the presence of WSSV infection, MjLTL2 knockdown by RNA interference resulted in a 7-day lower cumulative mortality of M. japonicus. Moreover, less VP19, VP24, VP26, and VP28 mRNAs were extracted from the hemocytes of MjLTL2 knockdown shrimp than from the control. These results suggest that MjLTL2 is involved in immune responses in shrimp.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Lectinas/metabolismo , Penaeidae/inmunología , Pruebas de Aglutinación , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica , Inmunidad Innata , Lectinas/química , Lectinas/genética , Penaeidae/clasificación , Penaeidae/genética , Filogenia , Polisacáridos Bacterianos/metabolismo , Alineación de Secuencia , Tasa de Supervivencia , Distribución Tisular , Vibrio/fisiología , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1/fisiología
4.
Fish Shellfish Immunol ; 75: 223-230, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29427718

RESUMEN

Activating transcription factor 6 (ATF6) pathway is the key branch of unfolded protein response (UPR). In this study, a homolog of ATFα from Marsupenaeus japonicus (MjATF6) was identified using genome sequencing and characterized, so as to investigate the role of ATF6 pathway in anti-viral immunity of M. japonicus. The cDNA of MjATF6 obtained was 1008 bp in length, with an open reading frame (ORF) of 849bp, which had encoded a putative of 283 amino acid proteins. Results of qRT-PCR showed that MjATF6 was distributed in all the six tested tissues, with the higher expression level being seen in hemocytes and hepatopancreas. Furthermore, MjATF6 expression would be up-regulated from 1 day to 7 day under white spot syndrome virus (WSSV) challenge. In comparison, RNA interference-induced MjATF6 knockdown had resulted in a lower 7-day cumulative mortality of M. japonicus in the presence of WSSV infection. Additionally, our results also revealed that less VP28 mRNA was extracted from hemocytes or hepatopancreas of MjATF6 knockdown shrimp than that from the control. Taken together, these results have confirmed that ATF6 pathway is vital for WSSV replication, and that UPR in M. japonicus may facilitate WSSV infection.


Asunto(s)
Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Penaeidae/genética , Penaeidae/inmunología , Factor de Transcripción Activador 6/química , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Perfilación de la Expresión Génica , Filogenia , Alineación de Secuencia , Virus del Síndrome de la Mancha Blanca 1/fisiología
6.
J Cell Mol Med ; 20(6): 1159-69, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26840039

RESUMEN

Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin-D2-regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p-RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2-3' untranslated region is targeted by miR-98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p-RB1 expression was regulated by miR-98. The results indicated that miR-98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR-98 might be related to regulation of Bcl-2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR-98 decreased in 4.5 g/l glucose-treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR-98 significantly decreased in aortas of established streptozotocin (STZ)-induced diabetic rat model compared with that in control rats; but cyclin D2 and p-RB1 levels remarkably increased in aortas of STZ-induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up-regulation and miR-98 down-regulation in the RAOECs. By regulating cyclin D2, miR-98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM.


Asunto(s)
Ciclina D2/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Glucosa/toxicidad , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Animales , Aorta/citología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Secuencia de Bases , Proliferación Celular/efectos de los fármacos , Ciclina D2/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , MicroARNs/genética , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo
7.
J Cell Mol Med ; 19(5): 1103-13, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25704671

RESUMEN

Pulmonary fibrosis (PF) is a disease with an unknown cause and a poor prognosis. In this study, we aimed to explore the pathogenesis of PF and the mechanism of sulindac in attenuating bleomycin (BLM)-induced PF. The rat PF model was induced by BLM and verified through histological studies and hydroxyproline assay. The severity of BLM-induced PF in rats and other effects, such as the extent of the wet lung to bw ratios, thickening of alveolar interval or collagen deposition, was obviously ameliorated in sulindac-treated rat lungs compared with BLM-induced lungs. Sulindac also reversed the epithelial mesenchymal transition (EMT) and inhibited the PF process by restoring the levels of E-cadherin and α-smooth muscle actin (SMA) in A549 cells. Our results further demonstrated that the above effects of sulindac might be related to regulating of interferon gamma (IFN-γ) expression, which further affects signal transducers and activators of transcription 3 (STAT3) and phosphorylated STAT3 (p-STAT3) levels. Moreover, higher miR-21 levels with the decreased E-cadherin and increased α-SMA expressions were found in transforming growth factor-ß1-treated A549 cells, which can be reversed by sulindac. Collectively, our results demonstrate that by decreasing IFN-γ-induced STAT3/p-STAT3 expression to down-regulate miR-21, sulindac could significantly reverse EMT in A549 cells and prevent BLM-induced PF.


Asunto(s)
Pulmón/efectos de los fármacos , MicroARNs/genética , Fibrosis Pulmonar/prevención & control , Factor de Transcripción STAT3/metabolismo , Sulindac/farmacología , Actinas/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , Bleomicina , Western Blotting , Cadherinas/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Interferón gamma/metabolismo , Pulmón/metabolismo , Pulmón/patología , Microscopía Fluorescente , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos
8.
Int J Nanomedicine ; 19: 3387-3404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617801

RESUMEN

Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Receptor de Muerte Celular Programada 1 , Inmunoterapia , Sistemas de Liberación de Medicamentos , Linfocitos T CD8-positivos , Neoplasias/tratamiento farmacológico
9.
Oncol Rep ; 51(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38456515

RESUMEN

After the publication of the article, an interested reader drew to the authors' attention that, in the western blots shown in Fig. 5C and D, a pair of data panels were inadvertently duplicated comparing between panels (C) and (D); in addition, the cell migration data shown in Fig. 7F on p. 1852 were selected incorrectly. The authors have examined their original data, and realize that these errors arose inadvertently as a consequence of their mishandling of their data. The revised versions of Figs. 5 and 7, featuring the corrected data for the caspase-8 experiment in Fig. 5C and alternative data for the cell migration assay experiments in Fig. 7F, are shown on the next two pages. The revised data shown for these Figures do not affect the overall conclusions reported in the paper. All the authors agree to the publication of this corrigendum, and are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this. Furthermore, the authors apologize to the readership for any inconvenience caused. [Oncology Reports 40: 1843-1854, 2018; DOI: 10.3892/or.2018.6593].

10.
Int J Nanomedicine ; 19: 2755-2772, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525008

RESUMEN

Purpose: The drug resistance and low response rates of immunotherapy limit its application. This study aimed to construct a new nanoparticle (CaCO3-polydopamine-polyethylenimine, CPP) to effectively deliver interleukin-12 (IL-12) and suppress cancer progress through immunotherapy. Methods: The size distribution of CPP and its zeta potential were measured using a Malvern Zetasizer Nano-ZS90. The morphology and electrophoresis tentative delay of CPP were analyzed using a JEM-1400 transmission electron microscope and an ultraviolet spectrophotometer, respectively. Cell proliferation was analyzed by MTT assay. Proteins were analyzed by Western blot. IL-12 and HMGB1 levels were estimated by ELISA kits. Live/dead staining assay was performed using a Calcein-AM/PI kit. ATP production was detected using an ATP assay kit. The xenografts in vivo were estimated in C57BL/6 mice. The levels of CD80+/CD86+, CD3+/CD4+ and CD3+/CD8+ were analyzed by flow cytometry. Results: CPP could effectively express EGFP or IL-12 and increase ROS levels. Laser treatment promoted CPP-IL-12 induced the number of dead or apoptotic cell. CPP-IL-12 and laser could further enhance CALR levels and extracellular HMGB1 levels and decrease intracellular HMGB1 and ATP levels, indicating that it may induce immunogenic cell death (ICD). The tumors and weights of xenografts in CPP-IL-12 or laser-treated mice were significantly reduced than in controls. The IL-12 expression, the CD80+/CD86+ expression of DC from lymph glands, and the number of CD3+/CD8+T or CD3+/CD4+T cells from the spleen increased in CPP-IL-12-treated or laser-treated xenografts compared with controls. The levels of granzyme B, IFN-γ, and TNF-α in the serum of CPP-IL-12-treated mice increased. Interestingly, CPP-IL-12 treatment in local xenografts in the back of mice could effectively inhibit the growth of the distant untreated tumor. Conclusion: The novel CPP-IL-12 could overexpress IL-12 in melanoma cells and achieve immunotherapy to melanoma through inducing ICD, activating CD4+ T cell, and enhancing the function of tumor-reactive CD8+ T cells.


Asunto(s)
Proteína HMGB1 , Melanoma , Humanos , Ratones , Animales , Interleucina-12 , Linfocitos T CD8-positivos , Melanoma/terapia , Melanoma/metabolismo , Proteína HMGB1/metabolismo , Muerte Celular Inmunogénica , Ratones Endogámicos C57BL , Proliferación Celular , Linfocitos T CD4-Positivos , Adenosina Trifosfato/metabolismo
11.
Commun Biol ; 7(1): 215, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383737

RESUMEN

Blocking immune checkpoint CD47/SIRPα is a useful strategy to engineer macrophages for cancer immunotherapy. However, the roles of CD47-related noncoding RNA in regulating macrophage phagocytosis for lung cancer therapy remain unclear. This study aims to investigate the effects of long noncoding RNA (lncRNA) on the phagocytosis of macrophage via CD47 and the proliferation of non-small cell lung cancer (NSCLC) via TIPRL. Our results demonstrate that lncRNA KCTD21-AS1 increases in NSCLC tissues and is associated with poor survival of patients. KCTD21-AS1 and its m6A modification by Mettl14 promote NSCLC cell proliferation. miR-519d-5p gain suppresses the proliferation and metastasis of NSCLC cells by regulating CD47 and TIPRL. Through ceRNA with miR-519d-5p, KCTD21-AS1 regulates the expression of CD47 and TIPRL, which further regulates macrophage phagocytosis and cancer cell autophagy. Low miR-519d-5p in patients with NSCLC corresponds with poor survival. High TIPRL or CD47 levels in patients with NSCLC corresponds with poor survival. In conclusion, we demonstrate that KCTD21-AS1 and its m6A modification promote NSCLC cell proliferation, whereas miR-519d-5p inhibits this process by regulating CD47 and TIPRL expression, which further affects macrophage phagocytosis and cell autophagy. This study provides a strategy through miR-519-5p gain or KCTD21-AS1 depletion for NSCLC therapy by regulating CD47 and TIPRL.


Asunto(s)
Adenina , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , Adenina/análogos & derivados , Autofagia/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Antígeno CD47/genética , Línea Celular Tumoral , Proliferación Celular/genética , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Pulmonares/patología , Macrófagos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fagocitosis , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
12.
Thorac Cancer ; 14(10): 913-928, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36808485

RESUMEN

BACKGROUND: The present study aimed to investigate the function of miR-3529-3p in lung adenocarcinoma and MnO2 -SiO2 -APTES (MSA) as a promising multifunctional delivery agent for lung adenocarcinoma therapy. METHODS: Expression levels of miR-3529-3p were evaluated in lung carcinoma cells and tissues by qRT-PCR. The effects of miR-3529-3p on apoptosis, proliferation, metastasis and neovascularization were assessed by CCK-8, FACS, transwell and wound healing assays, tube formation and xenografts experiments. Luciferase reporter assays, western blot, qRT-PCR and mitochondrial complex assay were used to determine the targeting relationship between miR-3529-3p and hypoxia-inducible gene domain family member 1A (HIGD1A). MSA was fabricated using MnO2 nanoflowers, and its heating curves, temperature curves, IC50, and delivery efficiency were examined. The hypoxia and reactive oxygen species (ROS) production was investigated by nitro reductase probing, DCFH-DA staining and FACS. RESULTS: MiR-3529-3p expression was reduced in lung carcinoma tissues and cells. Transfection of miR-3529-3p could promote apoptosis and suppress cell proliferation, migration and angiogenesis. As a target of miR-3529-3p, HIGD1A expression was downregulated, through which miR-3529-3p could disrupt the activities of complexes III and IV of the respiratory chain. The multifunctional nanoparticle MSA could not only efficiently deliver miR-3529-3p into cells, but also enhance the antitumor function of miR-3529-3p. The underlying mechanism may be that MSA alleviates hypoxia and has synergistic effects in cellular ROS promotion with miR-3529-3p. CONCLUSIONS: Our results establish the antioncogenic role of miR-3529-3p, and demonstrate that miR-3529-3p delivered by MSA has enhanced tumor suppressive effects, probably through elevating ROS production and thermogenesis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Nanopartículas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Dióxido de Silicio/metabolismo , Compuestos de Manganeso , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Óxidos/farmacología , Óxidos/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Proliferación Celular/genética , Fototerapia , Regulación Neoplásica de la Expresión Génica
13.
Int J Nanomedicine ; 18: 4381-4402, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37551273

RESUMEN

Introduction: As the special modality of cell death, immunogenic cell death (ICD) could activate immune response. Phototherapy in combination with chemotherapy (CT) is a particularly efficient tumor ICD inducing method that could overcome the defects of monotherapies. Methods: In this study, new dual stimuli-responsive micelles were designed and prepared for imaging-guided mitochondrion-targeted photothermal/photodynamic/CT combination therapy through inducing ICD. A dual-sensitive methoxy-polyethylene glycol-SS-poly(L-γ-glutamylglutamine)-SS-IR780 (mPEG-SS-PGG-SS-IR780) polymer was synthesized by grafting IR780 with biodegradable di-carboxyl PGG as the backbone, and mPEG-SS-PGG-SS-IR780/paclitaxel micelles (mPEG-SS-PGG-SS-IR780/PTXL MCs) were synthesized by encapsulating PTXL in the hydrophobic core. Results: In-vivo and -vitro results demonstrated that the three-mode combination micelles inhibited tumor growth and enhanced the therapeutic efficacy of immunotherapy. The dual stimuli-responsive mPEG-SS-PGG-SS-IR780/PTXL MCs were able to facilitate tumor cell endocytosis of nanoparticles. They were also capable of promoting micelles disintegration and accelerating PTXL release. The mPEG-SS-PGG-SS-IR780/PTXL MCs induced mitochondrial dysfunction by directly targeting the mitochondria, considering the thermo- and reactive oxygen species (ROS) sensitivity of the mitochondria. Furthermore, the mPEG-SS-PGG-SS-IR780/PTXL MCs could play the diagnostic and therapeutic roles via imaging capabilities. Conclusion: In summary, this study formulated a high-efficiency nanoscale platform with great potential in combined therapy for tumors through ICD.


Asunto(s)
Micelas , Nanopartículas , Muerte Celular Inmunogénica , Indoles/química , Fototerapia/métodos , Nanopartículas/química , Mitocondrias , Línea Celular Tumoral
14.
Int J Pharm ; 631: 122488, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36521638

RESUMEN

Reduced drug uptake and elevated drug efflux are two major mechanisms in cancer multidrug resistance (MDR). In the present study, a new multistage O2-producing liposome with NAG/R8-dual-ligand and stimuli-responsive dePEGylation was developed to address the abovementioned issues simultaneously. The designed C-NAG-R8-PTXL/MnO2-lip could also achieve magnetic resonance imaging (MRI)-guided synergistic chemodynamic/chemotherapy (CDT/CT). In vitro and in vivo studies showed that C-NAG-R8-PTXL/MnO2-lip enhanced circulation time by PEG and targeted the tumor site. After tumor accumulation, endogenous l-cysteine was administered, and the PEG-attached disulfide bond was broken, resulting in the dissociation of PEG shells. The previously hidden positively charged R8 by different lengths of PEG chains was exposed and mediated efficient internalization. In addition, the oxygen (O2) generated by C-NAG-R8-PTXL/MnO2-lip relieved the hypoxic environment within the tumor, thus reducing the efflux of chemotherapeutic drug. O2 was able to burst liposomes and triggered the release of PTXL. The toxic hydroxyl radical (·OH), which was produced by H2O2 and Mn2+, strengthened CDT/CT. C-NAG-R8-PTXL/MnO2-lip was also used as MRI contrast agent, which blazed the trail to rationally design theranostic agents for tumor imaging.


Asunto(s)
Liposomas , Neoplasias , Humanos , Liposomas/química , Compuestos de Manganeso/química , Línea Celular Tumoral , Peróxido de Hidrógeno , Óxidos/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Resistencia a Múltiples Medicamentos , Oxígeno , Imagen por Resonancia Magnética , Microambiente Tumoral , Nanomedicina Teranóstica
15.
Int J Mol Med ; 52(6)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37830154

RESUMEN

Following the publication of the above article, an interested reader drew to the authors' attention that, in Fig. 2 on p. 1408, the microscopic images shown for the light scope images (upper row) and the green fluorescence images (lower row) appeared to be overlapping, such that these images appeared to have been derived from the same original sources even though they were intended to portray the results from differently performed experiments. After having re­examined their figures, the authors realized that this figure was assembled incorrectly. The revised version of Fig. 2, showing the correct data for all four experimental panels, is shown below. Note that the errors made during the assembly of these figures did not affect the overall conclusions reported in the paper. All the authors agree with the publication of this corrigendum, and are grateful to the Editor of International Journal of Molecular Medicine for allowing them the opportunity to publish this. They also apologize to the readership for any inconvenience caused. [International Journal of Molecular Medicine 37: 1405­1411, 2016; DOI: 10.3892/ijmm.2016.2539].

16.
iScience ; 25(6): 104466, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35677640

RESUMEN

To infer the causality between obesity and fracture and the difference between general and abdominal obesity, a prospective study was performed in 456,921 participants, and 10,142 participants developed an incident fracture with follow-up period of 7.96 years. A U-shape relationship was observed between BMI and fracture, with the lowest risk of fracture in overweight participants. The obesity individuals had higher fracture risk when BMD was adjusted, and the protective effect of moderate-high BMI on fracture was mostly mediated by bone mineral density (BMD). However, for abdominal obesity, the higher WCadjBMI (linear) and HCadjBMI (J-shape) were found to be related to higher fracture risk, and less than 30% of the effect was mediated by BMD. By leveraging genetic instrumental variables, it provided additional evidences to support the aforementioned findings. In conclusion, keeping moderate-high BMI might be of benefit to old people in terms of fracture risk, whereas abdominal adiposity might increase risk of fracture.

17.
J Biomed Nanotechnol ; 18(2): 352-368, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35484752

RESUMEN

The construction of high-efficiency tumor theranostic platform will be of great interest in the treatment of cancer patients; however, significant challenges are associated with developing such a platform. In this study, we developed high-efficiency nanotheranostic agent based on ferroferric oxide, manganese dioxide, hyaluronic acid and doxorubicin (FMDH-D NPs) for dual targeting and imaging guided synergetic photothermal-enhanced chemodynamic/chemotherapy for cancer, which improved the specific uptake of drugs at tumor site by the dual action of CD44 ligand hyaluronic acid and magnetic nanoparticles guided by magnetic force. Under the acidic microenvironment of cancer cells, FMDH-D could be decomposed into Mn2+ and Fe2+ to generate •OH radicals by triggering a Fenton-like reaction and responsively releasing doxorubicin to kill cancer cells. Meanwhile, alleviating tumor hypoxia improved the efficacy of chemotherapy in tumors. The photothermal properties of FMDH generated high temperatures, which further accelerated the generation of reactive oxygen species, and enhanced effects of chemodynamic therapy. Furthermore, FMDH-D NPs proved to be excellent T1/T2-weighted magnetic resonance imaging contrast agents for monitoring the tumor location. These results confirmed the considerable potential of FMDH-D NPs in a highly efficient synergistic therapy platform for cancer treatment.


Asunto(s)
Compuestos de Manganeso , Neoplasias , Doxorrubicina/farmacología , Humanos , Ácido Hialurónico , Imagen por Resonancia Magnética , Compuestos de Manganeso/farmacología , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Óxidos , Microambiente Tumoral
18.
J Biomed Nanotechnol ; 18(3): 763-777, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35715902

RESUMEN

Although the development of safe and efficient cancer therapeutic agents is essential, this process remains challenging. In this study, a mitochondria-targeted degradable nanoplatform (PDA-MnO2-IR780) for synergistic photothermal, photodynamic, and sonodynamic tumor treatment was investigated. PDA-MnO2-IR780 exhibits superior photothermal properties owing to the integration of polydopamine, MnO2, and IR780. IR780, a photosensitizer and sonosensitizer, was used for photodynamic therapy and sonodynamic therapy. When PDA-MnO2-IR780 was delivered to the tumor site, MnO2 was decomposed by hydrogen peroxide, producing Mn2+ and oxygen. Meanwhile, alleviating tumor hypoxia promoted the production of reactive oxygen species during photodynamic therapy and sonodynamic therapy. Moreover, large amounts of reactive oxygen species could reduce the expression of heat shock proteins and increase the heat sensitivity of tumor cells, thereby improving the photothermal treatment effect. In turn, hyperthermia caused by photothermal therapy accelerated the production of reactive oxygen species in photodynamic therapy. IR780 selectively accumulation in mitochondria also promoted tumor apoptosis. In this system, the mutual promotion of photothermal therapy and photodynamic therapy/sonodynamic therapy had an enhanced therapeutic effect. Moreover, the responsive degradable characteristic of PDA-MnO2-IR780 in the tumor microenvironment ensured excellent biological safety. These results reveal a great potential of PDA-MnO2-IR780 for safe and highly-efficiency synergistic therapy for cancer.


Asunto(s)
Nanocompuestos , Nanopartículas , Fotoquimioterapia , Línea Celular Tumoral , Rayos Láser , Compuestos de Manganeso/metabolismo , Mitocondrias/metabolismo , Nanocompuestos/uso terapéutico , Nanopartículas/uso terapéutico , Óxidos , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno
19.
Thorac Cancer ; 13(6): 832-843, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35076182

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) function as potential diagnostic biomarkers in various cancers. This study aimed to evaluate the roles of miR-205-5p in lung cancer progression and diagnosis. MATERIALS AND METHODS: MiR-205-5p was detected by quantitative real-time PCR. The effect of miR-205-5p on cell proliferation and metastasis was estimated by MTT and flow cytometry. The expression of TP53INP1 and related genes was analyzed by immunoblotting. The diagnostic value of miR-205-5p was analyzed using receiver operating characteristic (ROC) curve analysis, sensitivity, and specificity. RESULTS: The miR-205-5p was increased in lung cancer tissues. MiR-205-5p mimics were promoted but its inhibitor suppressed cell proliferation and metastasis compared with control treatment in vitro and in vivo. By regulating the 3' untranslated region, miR-205-5p could negatively regulate TP53INP1 expression, which further inhibited the expression of RB1 and P21, but increased that of cyclinD1. Moreover, the serum miR-205-5p levels of patients with lung cancer were significantly higher than those of normal controls, and they were correlated with patients' gender, drinking status, and clinical stage. The area under the ROC curve of serum miR-205-5p in the diagnosis of non-small-cell lung cancer was 0.8250, respectively. The finding supported its possession of high diagnostic efficiency for lung cancer. CONCLUSIONS: MiR-205-5p promoted lung cancer cell proliferation and metastasis by negatively regulating the novel target TP53INP1, which further affected the expression of P21, RB1, and cyclin D1. Serum miR-205-5p is a novel and valuable biomarker for lung cancer diagnosis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Regiones no Traducidas 3' , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Portadoras/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de Choque Térmico/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo
20.
Front Oncol ; 12: 1032850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387210

RESUMEN

Long non-coding RNAs (lncRNAs) modulate cell proliferation, cycle, and apoptosis. However, the role of lncRNA-WFDC21P in the tumorigenesis of triple-negative breast cancer (TNBC) remains unclear. Results of this study demonstrated that WFDC21P levels significantly increased in TNBC, which was associated with the poor survival of patients. WFDC21P overexpression significantly promoted TNBC cell proliferation and metastasis. WFDC21P interacted with miR-628-5p, which further suppressed cell proliferation and metastasis by negatively regulating Smad3-related gene expression. Recovery of miR-628-5p weakened the roles of WFDC21P in promoting the growth and metastasis of TNBC cells. Moreover,N6-methyladenosine (m6A) modification upregulated WFDC21P expression in the TNBC cells. WFDC21P and its m6A levels were increased after methyltransferase like 3 (METTL3) overexpression but reduced after METTL3 silencing. The proliferation and metastasis of TNBC cells were promoted by METTL3 overexpression but suppressed by METTL3 silencing. This study demonstrated the vital roles of WFDC21P and its m6A in regulating the proliferation and metastasis of TNBC cells via the WFDC21P/miR-628/SMAD3 axis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA