Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 12(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36679027

RESUMEN

Arbuscular mycorrhizal fungi (AMF) form mutualistic symbiotic relationships with many land plants and play a key role in nitrogen (N) acquisition. NO3--N and NH4+-N are the main sources of soil mineral N, but how extraradical mycelial transfer affects the different N forms and levels available to tomato plants is not clear. In the present study, we set up hyphal compartments (HCs) to study the efficiency of N transfer from the extramycelium to tomato plants treated with different N forms and levels of fertilization. Labeled 15NO3--N or 15NH4+-N was placed in hyphal compartments under high and low N application levels. 15N accumulation in shoots and the expression of LeNRT2.3, LeAMT1.1, and LeAMT1.2 in the roots of tomato were measured. According to our results, both 15NO3--N and 15NH4+-N were transported via extraradical mycelia to the shoots of plants. 15N accumulation in shoots was similar, regardless of the N form, while a higher 15N concentration was found in shoots with low N application. Compared with the control, inoculation with AMF significantly increased the expression of LeAMT1.1 under high N and LeNRT2.3 under low N. The expression of LeAMT1.1 under high N was significantly increased when NO3-N was added, while the expression of LeNRT2.3 was significantly increased when NH4+-N was added under low N. Taken together, our results suggest that the N transfer by extraradical mycelia is crucial for the acquisition of both NO3--N and NH4+-N by the tomato plant; however, partial N accumulation in plant tissue is more important with N deficiency compared with a higher N supply. The expression of N transporters was influenced by both the form and level of N supply.

2.
Environ Pollut ; 285: 117246, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33940231

RESUMEN

Perfluorooctanoic acid (PFOA) is a typical persistent organic pollutant commonly detected in ecosystem. Insights into the risks of PFOA in crops, from the perspectives of food nutritional compositions, are sparse. In this study, the physiological responses to PFOA induced oxidative stress were investigated in lettuce (Lactuca sativa) leaves hydroponically exposed to 5 and 50 µg/L PFOA. The effects on photosynthesis and nutritional compositions were characterized. 35.1 and 316.7 ng/g dry weight PFOA were bio-accumulated in lettuce leaves under exposure to 5 and 50 µg/L PFOA, respectively. PFOA led to exposure-dependent over-generation of reactive oxidative species (ROS; H2O2, 8.1%-38.7%; OH, 11.3%-26.4%; O2-, 3.1%-22.8%) in leaves. Both non-enzymatic and enzymatic antioxidants were activated to scavenge ROS. Nevertheless, metabolomics results indicated some nutritional compositions in lettuce leaves were elevated by environmentally relevant concentrations of PFOA. Both primary metabolites, such as carbohydrates in the tricarboxylic acid cycle and amino acids, and secondary metabolites, such as bioactive (poly)phenol and alkaloid compounds, were significantly up-regulated. Leaf net photosynthetic rates were stimulated and intercellular CO2 concentration was decreased. A thorough scheme on the interaction between PFOA and lettuce leaves was proposed as well, to enhance the understanding of PFOA risks in crops.


Asunto(s)
Peróxido de Hidrógeno , Lactuca , Caprilatos , Ecosistema , Fluorocarburos , Estrés Oxidativo , Hojas de la Planta
3.
J Hazard Mater ; 404(Pt B): 124213, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33086182

RESUMEN

Comprehensive understanding of stress response and tolerance to perfluorooctane sulfonate (PFOS) in plants at physiological, biochemical and molecular levels is scarce. Here, lettuce was cultivated in hydroponic media, to investigate the cross-talk among reactive oxygen species (ROS) production, oxidative damage, antioxidative defense and metabolic regulation in different parts of plants. Under exposure to 5 and 50 µg/L PFOS for 10 days, 8.8 and 82.5 ng/g dry weight (dw) PFOS were accumulated in leaves, respectively, and 150.9 and 1445.6 ng/g dw in roots, respectively·H2O2 was the dominant ROS in roots, while H2O2 and •O2- were detected in leaves. Impaired permeability of plasma membrane (58.7-88.7%, p < 0.05) and reduction in chlorophyll a (41.4-55.6%, p < 0.01) and b (38.4-41.3%, p < 0.01) were observed in leaves. The concentration of soluble proteins was elevated by 93.2-127.4% in roots (p < 0.05). Non-enzymatic antioxidants (glutathione, phenolics and carotenoids) were regulated to scavenge ROS in leaves, beside additional enzymatic antioxidants (ascorbate peroxidase, peroxidase, catalase and glutathione peroxidase) were activated in roots. Metabolomics revealed that some metabolites in primary (amino acids and carbohydrates) and secondary ((poly)phenols, terpenoids and benzylisoquinolines) metabolism were regulated, in accordance with the ROS scavenging process in plants. Our results demonstrated stress response and tolerance to PFOS were different in lettuce leaves and roots, and multiple defensive mechanisms in roots rendered high tolerance to PFOS.


Asunto(s)
Ácidos Alcanesulfónicos , Lactuca , Ácidos Alcanesulfónicos/toxicidad , Antioxidantes , Clorofila A , Fluorocarburos , Peróxido de Hidrógeno , Estrés Oxidativo
4.
Sci Total Environ ; 726: 138382, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32481221

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) have been detected in many agricultural products in contaminated fields and in supply chains. Roots are the main organ in plants to uptake and bio-accumulate PFASs, but the changes of metabolic regulation in roots by PFASs are largely unexplored. Here, lettuce exposed to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at different concentrations (500, 1000, 2000 and 5000 ng/L) was investigated via metabolomics. Many key metabolites, such as antioxidants, lipids, amino acids, fatty acids, carbohydrates, linolenic acid derivatives, purine and nucleosides, were significantly altered. Tyrosine metabolism, purine metabolism, isoquinoline alkaloid biosynthesis and terpenoid backbone biosynthesis were altered in roots by PFOA and PFOS. Tricarboxylic acid cycle was perturbed by 5000 ng/L exposure. Activation of antioxidant defense pathways, reallocation of carbon and nitrogen metabolism, regulation of energy metabolism and purine metabolism were reprogrammed in roots. Lettuce employed multiple strategies to increase tolerance to PFOA and PFOS, which includes the adjustment of membrane composition, elevation of inorganic nitrogen fixation and respiration, accumulation of sucrose and regulation of signaling molecules. The results of this study offer insights into the molecular reprogramming of plant roots in response to PFAS exposure and provide important information for the risk assessment of PFASs in environment.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos/análisis , Caprilatos , Hidroponía , Lactuca
5.
Environ Pollut ; 256: 113512, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31706779

RESUMEN

Growing evidence shows plants are at risks of exposure to various per- and polyfluoroalkyl substances (PFASs), however the phytotoxicity induced by these compounds remains largely unknown on the molecular scale. Here, lettuce exposed to both perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at different concentrations (500, 1000, 2000 and 5000 ng/L) in hydroponic media was investigated via metabolomics. Under the co-exposure conditions, the growth and biomass were not affected by PFOA and PFOS, but metabolic profiles of mineral elements and organic compounds in lettuce leaves were significantly altered. The contents of Na, Mg, Cu, Fe, Ca and Mo were decreased 1.8%-47.8%, but Zn was increased 7.4%-24.2%. The metabolisms of amino acids and peptides, fatty acids and lipids were down-regulated in a dose-dependent manner, while purine and purine nucleosides were up-regulated, exhibiting the stress response to PFOA and PFOS co-exposure. The reduced amounts of phytol (14.8%-77.0%) and abscisic acid (60.7%-73.8%) indicated the alterations in photosynthesis and signal transduction. The metabolism of (poly)phenol, involved in shikimate-phenylpropanoid pathway and flavonoid branch pathway, was strengthened, to cope with the stress of PFASs. As the final metabolites of (poly)phenol biosynthesis, the abundance of various antioxidants was changed. This study offers comprehensive insight of plant response to PFAS co-exposure and enhances the understanding in detoxifying mechanisms.


Asunto(s)
Fluorocarburos/análisis , Lactuca/química , Ácidos Alcanesulfónicos/análisis , Caprilatos/análisis , Fluorocarburos/toxicidad , Hojas de la Planta , Purinas
6.
J Hazard Mater ; 389: 121852, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-31848096

RESUMEN

Poly- and perfluoroalkyl substances (PFASs) are becoming common pollutants in natural environment, while the toxic effects and defense mechanisms in agricultural plants are poorly understood. Here, lettuce exposed to either perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) at two different concentrations (500, 5000 ng/L) in hydroponic media was investigated via metabolomics. Under the tested conditions, the growth and biomass of lettuce were not affected by PFOA and PFOS, but metabolic profiles in leaves were altered. The composition and metabolism of lipids, carbohydrates, fatty acids, amino acids and some antioxidants were regulated, compromising the nutritional quality of the plants. Key pathways in energy metabolism were disturbed by both PFOA and PFOS, including tricarboxylic acid cycle, glyoxylate and dicarboxylate metabolism and pyruvate metabolism. Amino acid metabolism, e.g., phenylalanine and tyrosine, was disturbed by PFOA. The metabolism of linoleic acid was disturbed by PFOS. The changes of antioxidants and 8-hydroxy-deoxyguanosine indicated the occurrence of oxidative stress and DNA damage under PFOA or PFOS exposure. The main defense processes against PFASs exposure in lettuce included alteration in plasma membrane, activation of antioxidant systems, increase of tolerance and repair of DNA injury. These findings help elucidate the response of plants to PFASs in a molecular-scale perspective.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Caprilatos/toxicidad , Fluorocarburos/toxicidad , Lactuca/efectos de los fármacos , Daño del ADN , Metabolismo Energético/efectos de los fármacos , Hidroponía , Lactuca/crecimiento & desarrollo , Lactuca/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Metabolómica , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA