Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Phytoremediation ; 25(9): 1165-1172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36330849

RESUMEN

Selenium is one of the most basic trace elements in the human body. It is necessary to improve the selenium content in agricultural products through agricultural planting technology to ensure that human nutrition and health need selenium. Therefore, our research passed the effect of intercropping on the growth and selenium accumulation of pakchoi, lettuce and radish were studied through pot experiments to determine whether intercropping of the three crop species can improve their selenium accumulation ability. The results showed that intercropping increased the root and shoot biomass of pakchoi and radish compared with the monocultures, while the biomass of roots and shoots decreased in other intercropping combinations. Intercropping also affected the photosynthetic pigment content of the three crop species. Specifically, the photosynthetic pigments increased in pakchoi and decreased in radish after intercropping. Notably, intercropping the three crop species together increased the SOD (superoxide dismutase) activities of the three crops compared with the monocultures. Meanwhile, intercropping radish with lettuce significantly increased the activities of SOD and CAT (catalase) in radish. Intercropping also increased the soluble sugar content in pakchoi and soluble protein content of radish relative to the monocultures. Furthermore, intercropping decreased the selenium content and the bioconcentration factor of the roots of the three vegetable crops, but improved the shoot selenium content, the bioconcentration factor and the transport factor of Se in pakchoi and radish. In conclusion, intercropping combination of pakchoi and radish can improve selenium accumulation in the edible parts of the crops, which is significant for efficient production of selenium-enriched vegetables.


This research is significant because this study provides some basis for improving the selenium content of plants and efficient production of pakchoi and radish. Under the condition of selenium application in soil, the intercropping of pakchoi and lettuce can promote the growth of both and improve their selenium enrichment ability.


Asunto(s)
Raphanus , Selenio , Humanos , Lactuca/metabolismo , Raphanus/metabolismo , Selenio/metabolismo , Biodegradación Ambiental , Verduras/metabolismo , Productos Agrícolas/metabolismo , Superóxido Dismutasa/metabolismo
2.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36902443

RESUMEN

Spermidine synthase (SPDS) is a key enzyme in the polyamine anabolic pathway. SPDS genes help regulate plant response to environmental stresses, but their roles in pepper remain unclear. In this study, we identified and cloned a SPDS gene from pepper (Capsicum annuum L.), named CaSPDS (LOC107847831). Bioinformatics analysis indicated that CaSPDS contains two highly conserved domains: an SPDS tetramerisation domain and a spermine/SPDS domain. Quantitative reverse-transcription polymerase chain reaction results showed that CaSPDS was highly expressed in the stems, flowers, and mature fruits of pepper and was rapidly induced by cold stress. The function of CaSPDS in cold stress response was studied by silencing and overexpressing it in pepper and Arabidopsis, respectively. Cold injury was more serious and reactive oxygen species levels were greater in the CaSPDS-silenced seedlings than in the wild-type (WT) seedlings after cold treatment. Compared with the WT plants, the CaSPDS-overexpression Arabidopsis plants were more tolerant to cold stress and showed higher antioxidant enzyme activities, spermidine content, and cold-responsive gene (AtCOR15A, AtRD29A, AtCOR47, and AtKIN1) expression. These results indicate that CaSPDS plays important roles in cold stress response and is valuable in molecular breeding to enhance the cold tolerance of pepper.


Asunto(s)
Arabidopsis , Capsicum , Respuesta al Choque por Frío , Capsicum/genética , Espermidina Sintasa/genética , Espermidina Sintasa/metabolismo , Arabidopsis/genética , Estrés Fisiológico/genética , Plantones/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética
3.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35742832

RESUMEN

Chayote (Sechium edule) produces edible tubers with high starch content after 1 year of growth but the mechanism of chayote tuberization remains unknown. 'Tuershao', a chayote cultivar lacking edible fruits but showing higher tuber yield than traditional chayote cultivars, was used to study tuber formation through integrative analysis of the metabolome and transcriptome profiles at three tuber-growth stages. Starch biosynthesis- and galactose metabolism-related genes and metabolites were significantly upregulated during tuber bulking, whereas genes encoding sugars will eventually be exported transporter (SWEET) and sugar transporter (SUT) were highly expressed during tuber formation. Auxin precursor (indole-3-acetamide) and ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, were upregulated, suggesting that both hormones play pivotal roles in tuber development and maturation. Our data revealed a similar tuber-formation signaling pathway in chayote as in potatoes, including complexes BEL1/KNOX and SP6A/14-3-3/FDL. Down-regulation of the BEL1/KNOX complex and upregulation of 14-3-3 protein implied that these two complexes might have distinct functions in tuber formation. Finally, gene expression and microscopic analysis indicated active cell division during the initial stages of tuber formation. Altogether, the integration of transcriptome and metabolome analyses unraveled an overall molecular network of chayote tuberization that might facilitate its utilization.


Asunto(s)
Cucurbitaceae , Solanum tuberosum , Cucurbitaceae/genética , Regulación de la Expresión Génica de las Plantas , Metaboloma , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Almidón/metabolismo , Transcriptoma
4.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077395

RESUMEN

Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H2O2). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the 'Zunla-1' pepper genome (named CaPAO1-CaPAO6 according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). CaPAO2, CaPAO4, and CaPAO6 were ubiquitously and highly expressed in all tissues, CaPAO1 was mainly expressed in flowers, whereas CaPAO3 and CaPAO5 were expressed at very low levels in all tissues. RNA-seq analysis revealed that CaPAO2 and CaPAO4 were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. CaPAO2 and CaPAO4 overexpression in Arabidopsis thaliana significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H2O2, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (AtCOR15A, AtRD29A, AtCOR47, and AtKIN1). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars.


Asunto(s)
Arabidopsis , Capsicum , Arabidopsis/genética , Capsicum/genética , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Fitomejoramiento , Espermina , Poliamino Oxidasa
5.
Ecotoxicol Environ Saf ; 222: 112473, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34224970

RESUMEN

Soil cadmium (Cd) contamination severely threatens human health. Therefore, screening and breeding low-Cd absorption cultivars of cherry tomato (Solanum lycopersicum L.) is essential to restrict human Cd intake. In this study, a hydroponic experiment was conducted to perform a comparative transcriptome analysis of the leaves of two cherry tomato cultivars with different Cd contents under different Cd stress (0, 10, and 50 µM), for the purpose of exploring the differences in the transcriptional responses to Cd stress between the two cultivars. Our results revealed that the Cd content in the leaves of HLZ (Hanluzhe; a low-Cd accumulation cultivar) was significantly lower than that in the leaves of LFC (Lvfeicui; a high-Cd accumulation cultivar). Transcriptome analysis showed that the different expression genes (DEGs) were mainly involved in plant hormone signal transduction, antioxidant enzymes, cell wall biosynthesis, and metal transportation. In the LFC leaves, DEGs in the IAA signal transduction and antioxidant enzymes exhibited higher transcription levels. However, the DEGs in the ETH signal transduction demonstrated a lower transcription level compared to that of HLZ. Over-expressed genes in the pectin biosynthesis and pectin methylesterase (PME) of the LFC leaves might result in the trapping of Cd by increased levels of low-methylated pectin around the cell wall. Furthermore, Cd transporter genes, such as HMA5, NRAMP6, CAX3, ABCC3, and PDR1, were up-regulated in the HLZ leaves, indicating that the HLZ cultivar comprised an active Cd transport capacity from apoplast to vacuolar. This may contribute to the low Cd concentration observed in the HLZ leaves. Overall, our study provides a molecular basis for tomato screening and breeding.


Asunto(s)
Contaminantes del Suelo , Solanum lycopersicum , Cadmio/análisis , Cadmio/toxicidad , Perfilación de la Expresión Génica , Humanos , Solanum lycopersicum/genética , Fitomejoramiento , Raíces de Plantas/química , Raíces de Plantas/genética , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Transcriptoma
6.
Int J Phytoremediation ; 20(4): 295-300, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29053350

RESUMEN

Phytoremediation technology has become one of the main techniques for remediating soils polluted by heavy metals because it does not damage the environment, but heavy metal-tolerant plants have the disadvantages of low biomass and slow growth. A pot experiment was conducted to study the effects of melatonin (Mel) on growth and cadmium (Cd) accumulation in the Cd accumulator Malachium aquaticum and hyperaccumulator Galinsoga parviflora by spraying different concentrations of Mel on them. The results showed that shoot biomass, photosynthetic pigment content and antioxidant enzyme activity were increased in both species after Mel was sprayed on their leaves. Mel reduced the Cd content in shoots of M. aquaticum and increased it in those of G. parviflora. In general, Cd accumulation was greatest in M. aquaticum when Mel was 200 µmol L-1 (120.71 µg plant-1, increased by 15.97% than control) and in G. parviflora when Mel was 100 µmol L-1 (132.40 µg plant-1, increased by 68.30% than control). Our results suggest it is feasible to improve the remediation efficiency of lightly Cd-contaminated soil by spraying G. parviflora with100 µmol L-1 Mel.


Asunto(s)
Melatonina , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Cadmio/análisis , Raíces de Plantas
7.
Front Plant Sci ; 14: 1200106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37636124

RESUMEN

Introduction: Salicylic acid (SA) is a multi-functional endogenous phytohormone implicated in the growth, development, and metabolism of many plant species. Methods: This study evaluated the effects of different concentrations of SA (0, 25, 100, 200, and 500 mg/L) on the growth and cadmium (Cd) content of lettuce (Lactuca sativa L.) under Cd stress. The different concentrations of SA treatments were administered through foliar application. Results: Our results showed that 100-200 mg/L SA significantly increased the plant height and biomass of lettuce under Cd stress. When SA concentration was 200 mg/L, the plant height and root length of lettuce increased by 19.42% and 22.77%, respectively, compared with Cd treatment alone. Moreover, 200 mg/L and 500mg/L SA concentrations could reduce peroxidase (POD) and superoxide dismutase (SOD) activities caused by Cd stress. When the concentration of exogenous SA was 500 mg/L, the POD and SOD activities of lettuce leaves decreased by 15.51% and 19.91%, respectively, compared with Cd treatment. A certain concentration of SA reduced the uptake of Cd by the lettuce root system and the transport of Cd from the lettuce root system to shoots by down-regulating the expression of Nramp5, HMA4, and SAMT, thus reducing the Cd content of lettuce shoots. When the concentration of SA was 100 mg/L, 200 mg/L, and 500 mg/L, the Cd contents of lettuce shoots were 11.28%, 22.70%, and 18.16%, respectively, lower than that of Cd treatment alone. Furthermore, principal component and correlation analyses showed that the Cd content of lettuce shoots was correlated with plant height, root length, biomass, antioxidant enzymes, and the expression level of genes related to Cd uptake. Discussion: In general, these results provide a reference for the mechanism by which SA reduces the Cd accumulation in vegetables and a theoretical basis for developing heavy metal blockers with SA components.

9.
Front Plant Sci ; 13: 819630, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392507

RESUMEN

Low temperature is a significant factor affecting field-grown pepper. The molecular mechanisms behind peppers' response to cold stress remain unknown. Transcriptomic and metabolomic analyses were used to investigate the responses of two pepper cultivars, XS (cold-sensitive) and GZ (cold-resistant), to cold stress; these were screened from 45 pepper materials. In this study, compared with the control group (0 h), we identified 10,931 differentially expressed genes (DEGs) in XS and GZ, 657 differentially expressed metabolites (DEMs) in the positive ion mode, and 390 DEMs in the negative ion mode. Most DEGs were involved in amino acid biosynthesis, plant hormone signal transduction, and the mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, metabolomic analysis revealed that the content of free polyamines (PAs), plant hormones, and osmolytes, mainly contained increased putrescine, spermine, spermidine, abscisic acid (ABA), jasmonic acid (JA), raffinose, and proline, in response to cold stress. Importantly, the regulation of the ICE (inducer of CBF expression)-CBF (C repeat binding factors)-COR (cold regulated) pathway by Ca2+ signaling, MAPK signaling, and reactive oxygen species (ROS) signaling plays a key role in regulating responses of peppers to cold stress. Above all, the results of the present study provide important insights into the response of peppers to cold stress, which will reveal the potential molecular mechanisms and contribute to pepper screening and breeding in the future.

10.
Genes (Basel) ; 13(6)2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35741717

RESUMEN

Cadmium (Cd) accumulation in lettuce causes a large amount of yield loss during industry. Although many studies report that exogenous melatonin helps to alleviate the Cd stress of lettuce, the molecular mechanism for how plant tissue responds to Cd treatment is unclear. Herein, we applied both PacBio and Illumina techniques for Italian lettuce under different designed treatments of Cd and melatonin, aiming to reveal the potential molecular pathway of the response to Cd stress as well as the how the pre-application of exogenous melatonin affect this process. This result reveals that the root has the biggest expression pattern shift and is a more essential tissue to respond to both Cd and melatonin treatments than leaves. We reveal the molecular background of the Cd stress response in prospects of antioxidant and hormone signal transduction pathways, and we found that their functions are diverged and specifically expressed in tissues. We also found that candidate genes related to melatonin detoxify during Cd stress. Our study sheds new light for future research on how melatonin improves the cadmium resistance of lettuce and also provide valuable data for lettuce breeding.


Asunto(s)
Lactuca , Melatonina , Cadmio/metabolismo , Cadmio/toxicidad , Lactuca/genética , Melatonina/farmacología , Fitomejoramiento , Transcriptoma
11.
Front Plant Sci ; 13: 1059804, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589110

RESUMEN

Asparagus bean (Vigna unguiculata ssp. sesquipedialis) is an important cowpea subspecies. We assembled the genomes of Ningjiang 3 (NJ, 550.31 Mb) and Dubai bean (DB, 564.12 Mb) for comparative genomics analysis. The whole-genome duplication events of DB and NJ occurred at 64.55 and 64.81 Mya, respectively, while the divergence between soybean and Vigna occurred in the Paleogene period. NJ genes underwent positive selection and amplification in response to temperature and abiotic stress. In species-specific gene families, NJ is mainly enriched in response to abiotic stress, while DB is primarily enriched in respiration and photosynthesis. We established the pan-genomes of four accessions (NJ, DB, IT97K-499-35 and Xiabao II) and identified 20,336 (70.5%) core genes present in all the accessions, 6,507 (55.56%) variable genes in two individuals, and 2,004 (6.95%) unique genes. The final pan genome is 616.35 Mb, and the core genome is 399.78 Mb. The variable genes are manifested mainly in stress response functions, ABC transporters, seed storage, and dormancy control. In the pan-genome sequence variation analysis, genes affected by presence/absence variants were enriched in biological processes associated with defense responses, immune system processes, signal transduction, and agronomic traits. The results of the present study provide genetic data that could facilitate efficient asparagus bean genetic improvement, especially in producing cold-adapted asparagus bean.

12.
Sci Rep ; 11(1): 13600, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193957

RESUMEN

Phedimus aizoon L. is a drought-resistant Chinese herbal medicine and vegetable. However, its drought tolerant limit and the mechanism of drought tolerance are unknown, which restricts the promotion of water-saving cultivation of Phedimus aizoon L. in arid areas. To solve the above problem, we carried out a 30-day-long drought stress experiment in pots that presented different soil water contents and were divided into four groups: control check, 75-80% of the maximum water-holding capacity (MWHC); mild drought, 55-60%; moderate drought, 40-45%; and severe drought, 20-25%. The dynamic changes in both plant physiological indexes from 10 to 30 days and leaf anatomical structure on the 30th day of stress were recorded. The results show that Phedimus aizoon L. grew normally under mild drought stress for 30 days, but the growth of the plants became inhibited after 20 days of severe drought and after 30 days of moderate drought. At the same time, Phedimus aizoon L. physiologically responded to cope with drought stress: the growth of the root system accelerated, the waxy layer of the leaves thickened, and the dark reactions of the plants transformed from those of the C3 cycle to CAM. The activity of antioxidant enzymes (SOD, POD and CAT) continuously increased to alleviate the damage caused by drought stress. To ensure the relative stability of the osmotic potential, the contents of osmoregulatory substances such as proline, soluble sugars, soluble protein and trehalose increased correspondingly. Although Phedimus aizoon L. has strong drought stress resistance, our experimental results show that the soil available water content should not be less than 27% during cultivation.

13.
Environ Sci Pollut Res Int ; 27(31): 39094-39104, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32638307

RESUMEN

Two pot experiments were conducted to study the effects of intercropping cadmium (Cd) accumulator plants (Stellaria media (L.) Villars, Cardamine hirsuta, Cerastium glomeratum Thuill, and Galium aparine L.) and applying their straw on the growth and Cd accumulation of Brassica chinensis L. Intercropping with four accumulator plants reduced the biomass, water content, and photosynthetic pigment content of B. chinensis compared with monoculture. Intercropping with accumulator plants increased the Cd content in the roots and shoot of B. chinensis, and the translocation factor (TF), root bioconcentration factor (root BCF), and shoot bioconcentration factor (Shoot BCF) increased. The soil pH decreased and the soil available Cd content increased by intercropping. Thus, intercropping with four accumulator plants can promote the Cd uptake of B. chinensis. The straw of four accumulator plants reduced the biomass, water content, and photosynthetic pigment content of B. chinensis compared with the control. The straw of S. media and C. hirsute increased the Cd content in the roots and shoots of B. chinensis, TF, root BCF, and shoot BCF. The straw of C. glomeratum and G. aparine decreased the Cd content in the roots and shoots of B. chinensis, TF, root BCF, and shoot BCF. The soil pH increased and the soil available Cd content decreased by application of straw. Thus, the straw of C. glomeratum and G. aparine can reduce the Cd uptake of B. chinensis.


Asunto(s)
Brassica , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Cadmio/análisis , Raíces de Plantas/química , Suelo
14.
Environ Sci Pollut Res Int ; 25(30): 30671-30679, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30178407

RESUMEN

The effects of application of straw derived from cadmium (Cd) accumulator plants (Siegesbeckia orientalis, Conyza canadensis, Eclipta prostrata, and Solanum photeinocarpum) on growth and Cd accumulation of lettuce plants grown under Cd exposure were studied. Treatment with straw of the four Cd-accumulator species promoted growth, photosynthesis, and soluble protein contents and enhanced the activities of peroxidase in leaves of lettuce seedlings. The biomass of shoot of lettuce from high to low in turn is the treatment of C. canadensis straw > S. photeinocarpum straw > S. orientalis > E. prostrata > Control. The Cd content in edible parts (shoots) of the lettuce plants was significantly decreased in the presence of straw from the Cd-accumulator species, except the presence of the straw of E. prostrata. And, the greatest reduction in Cd content in shoots was 27.09% in the S. photeinocarpum straw treatment compared with that of the control. Therefore, application of straw of S. orientalis, C. canadensis, and S. photeinocarpum can promote the growth of lettuce seedlings, and decrease their Cd accumulation, when grown in Cd-contaminated soil, which is beneficial for production of lettuce safe for human consumption.


Asunto(s)
Cadmio/metabolismo , Lactuca/metabolismo , Fotosíntesis , Tallos de la Planta/química , Asteraceae/química , Asteraceae/metabolismo , Biomasa , Cadmio/análisis , Producción de Cultivos , Lactuca/química , Lactuca/enzimología , Lactuca/crecimiento & desarrollo , Peroxidasa/metabolismo , Hojas de la Planta/química , Hojas de la Planta/enzimología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Plantones/química , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Solanum/química , Solanum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA