Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38849305

RESUMEN

AIMS: Irritable bowel syndrome (IBS) is a prevalent gastrointestinal disorder, encompassing diarrhea-predominant irritable bowel syndrome (IBS-D). Here, we utilized 16S rDNA gene sequencing to identify potential microbial drivers of IBS-D. METHODS AND RESULTS: A total of 30 healthy relatives and 27 patients with IBS-D were recruited. Clinical data and fecal samples were collected from patients and controls. 16S rDNA gene sequencing was performed to obtain fecal bacterial data. Differences in community composition were evaluated utilizing analysis of similarity (ANOSIM) using Bray-Curtis dissimilarity. The Wilcoxon rank sum test was used to compare differences in taxa and functional pathways. Finally, the key gut microbiota was identified using the random forest algorithm. Gut microbiota diversity, estimated through the Observe, Chao1, and abundance-based coverage estimator (ACE) indices, was significantly lower in the IBS-D patients than in the healthy relatives. ANOSIM analysis further confirmed significant differences in the composition of the gut microbiota between IBS-D patients and healthy relatives, with an R value of 0.106 and a P-value of 0.005. Notably, the IBS-D patients exhibited a significant enrichment of specific bacterial genera, including Fusicatenibacter, Streptococcus, and Klebsiella, which may possess potential pathogenic properties. In particular, the bacterial genus Klebsiella demonstrated a positive correlation with irritable bowel syndrome severity scoring system scores. Conversely, healthy subjects showed enrichment of bacterial genera such as Alistipes, Akkermansia, and Dialister, which may be beneficial bacteria in IBS-D. Utilizing the random forest model, we developed a discriminative model for IBS-D based on differential bacterial genera. This model exhibited impressive performance, with an area under the curve value of 0.90. Additionally, our analysis did not reveal any gender-specific differences in the microbiota community composition among IBS-D patients. CONCLUSIONS: Our findings offer preliminary insights into the potential relationship between intestinal microbiota and IBS-D. The identification model for IBS-D, grounded in gut microbiota, holds promising prospects for improving early diagnosis of IBS-D.


Asunto(s)
Bacterias , Diarrea , Heces , Microbioma Gastrointestinal , Síndrome del Colon Irritable , ARN Ribosómico 16S , Síndrome del Colon Irritable/microbiología , Humanos , Diarrea/microbiología , Adulto , Heces/microbiología , Femenino , Masculino , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Persona de Mediana Edad , Estudios de Casos y Controles , ADN Bacteriano/genética , Adulto Joven
2.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555652

RESUMEN

The effective antiviral agents that treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed around the world. The 3C-like protease (3CLpro) of SARS-CoV-2 plays a pivotal role in virus replication; it also has become an important therapeutic target for the infection of SARS-CoV-2. In this work, we have identified Darunavir derivatives that inhibit the 3CLpro through a high-throughput screening method based on a fluorescence resonance energy transfer (FRET) assay in vitro. We found that the compounds 29# and 50# containing polyphenol and caffeine derivatives as the P2 ligand, respectively, exhibited favorable anti-3CLpro potency with EC50 values of 6.3 µM and 3.5 µM and were shown to bind to SARS-CoV-2 3CLpro in vitro. Moreover, we analyzed the binding mode of the DRV in the 3CLpro through molecular docking. Importantly, 29# and 50# exhibited a similar activity against the protease in Omicron variants. The inhibitory effect of compounds 29# and 50# on the SARS-CoV-2 3CLpro warrants that they are worth being the template to design functionally improved inhibitors for the treatment of COVID-19.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Darunavir , Inhibidores de Proteasas , SARS-CoV-2 , Humanos , Antivirales/farmacología , COVID-19 , Darunavir/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores
3.
J Recept Signal Transduct Res ; 41(1): 45-52, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32605460

RESUMEN

Plantamajoside (PMS) is a phenylpropanoid glycoside that possesses anti-diabetic activity. However, the effect of PMS on diabetic nephropathy (DN) has not been investigated. This study aimed to evaluate the role of PMS in DN and the potential mechanism. The rat glomerular mesangial cells ((MCs) (HBZY-1 cells) were cultured under high glucose (HG) condition or normal condition with or without the treatment of PMS. The results showed that PMS ameliorated the cell injury that was induced by HG in HBZY-1 cells. The HG-caused increases in reactive oxygen species (ROS) and malondialdehyde (MDA) production and decrease in superoxide dismutase (SOD) activity were prevented by PMS. The qRT-PCR and ELISA assays demonstrated an anti-inflammatory activity of PMS, as evidenced by decreased levels of TNF-α, IL-1ß, and IL-6 in HG-induced HBZY-1 cells. Moreover, the increased levels of fibronectin (FN) and collagen type IV (Col IV) in HBZY-1 cells caused by HG were also reduced by PMS treatment. Furthermore, PMS significantly suppressed HG-induced activation of Akt/NF-κB signaling in HBZY-1 cells. Taken together, these findings indicated that PMS alleviated HG-induced injury in HBZY-1 cells through suppressing oxidative stress, inflammatory response, and extracellular matrix (ECM) accumulation via the inactivating Akt/NF-κB pathway. Thus, PMS might possess potential capacity for the treatment of DN.


Asunto(s)
Catecoles/farmacología , Glucósidos/farmacología , Inflamación/tratamiento farmacológico , Células Mesangiales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/efectos adversos , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/patología , Células Mesangiales/patología , FN-kappa B/genética , FN-kappa B/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Ratas
4.
Mol Ther ; 28(2): 587-598, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31843451

RESUMEN

Emerging evidence has indicated that abnormal methylation of DNA contributes to hepatocarcinogenesis. However, the regulatory mechanisms are not well known. Here, we revealed that microRNA-639 (miR-639) expression is downregulated in liver cancer tissues and cells. The repression of miR-639 expression was attributed to hypermethylation in its promoter region, and DNA methyltransferase (DNMT3A) was found to mediate this hypermethylation. Repression of miR-639 expression promoted cell growth and migration/invasion in vitro and the growth of tumors in xenograft mouse models. Furthermore, miR-639 bound to the 3' UTR of both MYST2 and ZEB1 and suppressed their expression. MYST2 promoted the growth of liver cancer cells and ZEB1 facilitated the migration/invasion of liver cancer cells. Ectopic expression of MYST2 and ZEB1 counteracted the repression of malignancy induced by miR-639, which coincided with the reciprocal correlation between miR-639 and MYST2 and ZEB1 expression in clinical hepatocellular carcinoma (HCC) tissues. Thus, DNMT3A-mediated hypermethylation suppressed miR-639 expression, derepressing the expression of MSYT2 and ZEB1, which promoted tumorigenesis of liver cancer. These findings may shed light on the mechanism of abnormal expression of miRNAs involved in the malignancy of liver cancer and provide new biomarkers for liver cancer.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Silenciador del Gen , Genes Supresores de Tumor , MicroARNs/genética , Interferencia de ARN , Regiones no Traducidas 3' , Carcinoma Hepatocelular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , ADN Metiltransferasa 3A , Decitabina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Hepáticas , Modelos Biológicos , Regiones Promotoras Genéticas
5.
Environ Microbiol ; 21(9): 3505-3526, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31233661

RESUMEN

Nearly 1400 Bacillus strains growing in the plant rhizosphere were sampled from different sites on the Qinghai-Tibetan Plateau. Forty-five of the isolates, selected due to their biocontrol activity, were genome-sequenced and their taxonomic identification revealed that they were representatives of the Bacillus subtilis species complex (20) and the Bacillus cereus group (9). Majority of the remaining strains were found closely related to Bacillus pumilus, but their average nucleotide identity based on BLAST and electronic DNA/DNA hybridization values excluded closer taxonomic identification. A total of 45 different gene clusters involved in synthesis of secondary metabolites were detected by mining the genomes of the 45 selected strains. Except eight mesophilic strains, the 37 remaining strains were found either cold-adapted or psychrophilic, able to propagate at 10°C and below (Bacillus wiedmannii NMSL88 and Bacillus sp. RJGP41). Pot experiments performed at 10°C with winter wheat seedlings revealed that cold-adapted representatives of B. pumilus, B. safensis and B. atrophaeus promoted growth of the seedlings under cold conditions, suggesting that these bacilli isolated from a cold environment are promising candidates for developing of bioformulations useful for application in sustainable agriculture under environmental conditions unfavourable for the mesophilic bacteria presently in use.

6.
J Transl Med ; 17(1): 35, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30665429

RESUMEN

BACKGROUND: Despite that most HIV-infected individuals experience progressive CD4+ T cell loss and develop AIDS, a minority of HIV-infected individuals remain asymptomatic and maintain high level CD4+ T cell counts several years after seroconversion. Efforts have been made to understand the determinants of the nonprogressive status, exemplified by the clinical course of elite controllers (ECs) who maintain an undetectable viremia and viremic nonprogressors (VNPs) who have a normal CD4+ count in spite of circulating viral load. However, the intrinsic mechanism underlying nonprogression remained elusive. In this study, we performed an integrative analysis of transcriptional profiles to pinpoint the underlying mechanism for a naturally occurring viral control. METHODS: Three microarray datasets, reporting mRNA expression of the LTNPs or ECs in HIV-infected patients, were retrieved from Gene Expression Ominbus (GEO) or Arrayexpress databases. These datasets, profiled on the same type of microarray chip, were selected and merged by a bioinformatic approach to build a meta-analysis derived transcriptome (MADNT). In addition, we investigated the different transcriptional pathways and potential biomarkers in CD4+ and CD8+ cells in ECs and whole blood in VNPs compared to HIV progressors. The combined transcriptome and each subgroup was subject to gene set enrichment analysis and weighted co-expression network analysis to search potential transcription patterns related to the non-progressive status. RESULTS: 30 up-regulated genes and 83 down-regulated genes were identified in lymphocytes from integrative meta-analysis of expression data. The interferon response and innate immune activation was reduced in both CD4+ and CD8+ T cells from ECs. Several characteristic genes including CMPK1, CBX7, EIF3L, EIF4A and ZNF395 were indicated to be highly correlated with viremic control. Besides that, we indicated that the reduction of ribosome components and blockade of translation facilitated AIDS disease progression. Most interestingly, among VNPs who have a relatively high viral load, we detected a two gene-interaction networks which showed a strong correlation to immune control even with a rigorous statistical threshold (p value = 2-e4 and p value = 0.004, respectively) by WGCNA. CONCLUSIONS: We have identified differentially expressed genes and transcriptional patterns in ECs and VNPs compared to normal chronic HIV-infected individuals. Our study provides new insights into the pathogenesis of HIV and AIDS and clues for the therapeutic strategies for anti-retroviral administration.


Asunto(s)
Perfilación de la Expresión Génica , Genómica , Infecciones por VIH/genética , Transcripción Genética , Bases de Datos Genéticas , Ontología de Genes , Redes Reguladoras de Genes , Sobrevivientes de VIH a Largo Plazo , Humanos , Anotación de Secuencia Molecular , Factores de Tiempo , Transcriptoma/genética , Viremia/genética
7.
Diabetes Obes Metab ; 21(6): 1474-1482, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30830724

RESUMEN

AIM: Phase III, randomized, double-blind study evaluating the efficacy and safety of ertugliflozin in Asian patients with type 2 diabetes mellitus (T2DM) inadequately controlled on metformin, including evaluation in the China subpopulation. MATERIALS AND METHODS: A 26-week, double-blind study of 506 Asian patients (80.2% from mainland China), randomized 1:1:1 to placebo, ertugliflozin 5- or 15 mg, was performed. Primary endpoint was change from baseline in HbA1c at week 26. Secondary endpoints were change from baseline at week 26 in fasting plasma glucose (FPG), body weight (BW), systolic/diastolic blood pressure (SBP/DBP), and proportion of patients with HbA1c <7.0%. Hypotheses for the primary endpoint and FPG and BW secondary endpoints were tested in the China subpopulation. RESULTS: At week 26, least squares mean (95% CI) change from baseline HbA1c was significantly greater with ertugliflozin 5- and 15 mg versus placebo: -1.0% (-1.1, -0.9), -0.9% (-1.0, -0.8), -0.2% (-0.3, -0.1), respectively. Ertugliflozin significantly reduced FPG, BW and SBP. Reductions in DBP with ertugliflozin were not significant. At week 26, 16.2%, 38.2% and 40.8% of patients had HbA1c <7.0% with placebo, ertugliflozin 5- and 15 mg, respectively. 59.3%, 56.5% and 53.3% of patients experienced adverse events with placebo, ertugliflozin 5- and 15 mg, respectively. Incidence of symptomatic hypoglycaemia was higher for ertugliflozin 15 mg vs placebo. Results in the China subpopulation were consistent. CONCLUSIONS: Ertugliflozin significantly improved glycaemic control and reduced BW and SBP in Asian patients with T2DM. Ertugliflozin was generally well-tolerated. Results in the China subpopulation were consistent with the overall population. ClinicalTrials.gov: NCT02630706.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Anciano , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Asia Oriental , Femenino , Humanos , Masculino , Metformina/efectos adversos , Metformina/uso terapéutico , Persona de Mediana Edad , Filipinas , Inhibidores del Cotransportador de Sodio-Glucosa 2/administración & dosificación , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
8.
Med Sci Monit ; 25: 9893-9901, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31869828

RESUMEN

BACKGROUND The flavones are considered as competent antidiabetic molecules due to their strong antioxidant activities and higher in vivo stability. The present study evaluated the antidiabetic and hypolipidemic effects of 5,7-dimethoxyflavone in streptozotocin (STZ)-induced diabetic rat models. MATERIAL AND METHODS The antidiabetic potential of 5,7-dimethoxyflavone was evaluated in streptozotocin-induced diabetic rats. The serum levels of triglyceride, total cholesterol, and high-density lipoprotein cholesterol were measured using the Randox assay kit. Histopathological examination was carried out by hematoxylin and eosin (HE) staining. RESULTS Oral administration of 5,7-dimethoxyflavone significantly reduced STZ-induced enhancement in blood sugar and glycosylated hemoglobin, as well as significant increases in C-peptide, insulin, hemoglobin, and total protein content (p<0.05). Additionally, treatment with 5,7-dimethoxyflavone resulted in a remarkable increase in non-enzymic antioxidants. Administration of 5,7-dimethoxyflavone had a hypolipidemic effect by significantly reducing levels of serum triglycerides, total cholesterol, and low-density lipoproteins. The histopathological examination of rat pancreases revealed the beneficial effect of 5,7-dimethoxyflavone and protection of ß cell integrity in STZ-induced diabetic rats. CONCLUSIONS These findings reflect the antidiabetic and hypolipidemic effects of 5,7-dimethoxyflavone, suggesting that 5,7-dimethoxyflavone may be a promising compound for use in development of new antidiabetic drugs.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Flavonoides/farmacología , Animales , Antioxidantes/farmacología , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Hemoglobina Glucada/metabolismo , Hipoglucemiantes/farmacología , Hipolipemiantes/uso terapéutico , Insulina/sangre , Lípidos/sangre , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar , Estreptozocina
10.
Microbiology (Reading) ; 163(4): 523-530, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28418289

RESUMEN

Rhizobacterial volatile organic compounds (VOCs) play an important role in the suppression of soil-borne phytopathogens. In this study, the VOCs produced by a soil-isolate, Bacillus subtilis FA26, were evaluated in vitro for their antibacterial activity against Clavibacter michiganensis ssp. sepedonicus (Cms), the causal agent of bacterial ring rot of potato. The VOCs emitted by FA26 inhibited the growth of Cms significantly compared with the control. Scanning and transmission electron microscopy analyses revealed distorted colony morphology and a wide range of abnormalities in Cms cells exposed to the VOCs of FA26. Varying the inoculation strategy and inoculum size showed that the production and activity of the antibacterial VOCs of FA26 were dependent on the culture conditions. Headspace solid-phase microextraction/gas chromatography-mass spectrometry analyses revealed that FA26 produced 11 VOCs. Four VOCs (benzaldehyde, nonanal, benzothiazole and acetophenone) were associated with the antibacterial activity against Cms. The results suggested that the VOCs produced by FA26 could control the causal agent of bacterial ring rot of potato. This information will increase our understanding of the microbial interactions mediated by VOCs in nature and aid the development of safer strategies for controlling plant disease.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/metabolismo , Micrococcaceae/efectos de los fármacos , Micrococcaceae/ultraestructura , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Acetofenonas/metabolismo , Acetofenonas/farmacología , Aldehídos/metabolismo , Aldehídos/farmacología , Antibacterianos/biosíntesis , Benzaldehídos/metabolismo , Benzaldehídos/farmacología , Benzotiazoles/metabolismo , Benzotiazoles/farmacología , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Micrococcaceae/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Nodulación de la Raíz de la Planta/fisiología , Microbiología del Suelo , Solanum tuberosum/microbiología
11.
J Biol Inorg Chem ; 22(6): 851-865, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28502066

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease which is clinically characterized by memory loss and cognitive decline caused by protein misfolding and aggregation. Imbalance between free radicals and the antioxidant system is a prominent and early feature in the neuropathology of AD. Selenium (Se), a vital trace element with excellent antioxidant potential, is preferentially retained in the brain in Se-limited conditions and has been reported to provide neuroprotection through resisting oxidative damage. In this paper, we studied for the first time the potential of Ebselen, a lipid-soluble selenium compound with GPx-like activity, in the treatment of cognitive dysfunction and neuropathology of triple-transgenic AD (3 × Tg-AD) mice, AD model cell, and primary culture. We demonstrated that Ebselen inhibited oxidative stress in both AD model cells and mouse brains with increasing GPx and SOD activities and meanwhile reduced p38 mitogen-activated protein kinases activities. By decreasing the expression of amyloid precursor protein and ß-secretase, Ebselen reduced the levels of Aß in AD neurons and mouse brains, especially the most toxic oligomeric form. Besides, mislocation of phosphorylated tau in neurons and phosphorylation levels of tau protein at Thr231, Ser396, and Ser404 residues were also inhibited by Ebselen, probably by its regulatory roles in glycogen synthase kinase 3ß and protein phosphatase 2A activity. In addition, Ebselen mitigated the decrease of synaptic proteins including synaptophysin and postsynaptic density protein 95 in AD model cells and neurons. Consequently, the spatial learning and memory of 3 × Tg-AD mice were significantly improved upon Ebselen treatment. This study provides a potential novel therapeutic approach for the prevention of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Azoles/farmacología , Cognición/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/química , Animales , Azoles/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Isoindoles , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/patología , Compuestos de Organoselenio/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína , Especies Reactivas de Oxígeno/metabolismo
12.
BMC Microbiol ; 15: 21, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25651892

RESUMEN

BACKGROUND: Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. However, the mechanisms and pathways involved in the interactions between PGPR and plants remain unclear. In order to better understand these complex plant-PGPR interactions, changes in the transcriptome of the typical PGPR Bacillus subtilis in response to rice seedlings were analyzed. RESULTS: Microarray technology was used to study the global transcriptionl response of B. subtilis OKB105 to rice seedlings after an interaction period of 2 h. A total of 176 genes representing 3.8% of the B. subtilis strain OKB105 transcriptome showed significantly altered expression levels in response to rice seedlings. Among these, 52 were upregulated, the majority of which are involved in metabolism and transport of nutrients, and stress responses, including araA, ywkA, yfls, mtlA, ydgG et al. The 124 genes that were downregulated included cheV, fliL, spmA and tua, and these are involved in chemotaxis, motility, sporulation and teichuronic acid biosynthesis, respectively. CONCLUSIONS: We present a transcriptome analysis of the bacteria Bacillus subtilis OKB105 in response to rice seedings. Many of the 176 differentially expressed genes are likely to be involved in the interaction between Gram-positive bacteria and plants.


Asunto(s)
Bacillus subtilis/genética , Perfilación de la Expresión Génica , Oryza/microbiología , Plantones/microbiología , Bacillus subtilis/crecimiento & desarrollo , Análisis por Micromatrices
13.
Biomol Biomed ; 24(1): 196-204, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-37702601

RESUMEN

Many studies have shown that recovered coronavirus disease 2019 (COVID-19) patients frequently exhibit recurrent viral RNA positivity (RP) for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our study aimed to summarize the clinical characteristics of these patients and explore potential reasons for RP occurrence. We divided 439 participants into four groups based on the severity of illness prior to the COVID-19 recovery and age: mild-child group, moderate-child group, mild-adult group, and moderate-adult group. Laboratory data were collected and statistical analyzed using the SPSS software, version 24.0. Significant differences were observed in age, alanine aminotransferase (ALT), aspartate aminotransferase (AST), C-reactive protein (CRP), interleukin 6 (IL-6), and neutrophil to lymphocyte ratio (NLR) levels between the mild-adult group and the moderate-adult group (P < 0.05). Additionally, AST levels differed significantly between the mild-child group and the moderate-child group (P < 0.05). The proportion of RP patients within the four groups varied from 7.95% to 26.13% within a 2-week period. Logistic regression analysis revealed that younger age and moderate symptoms were risk factors for RP in children, while the presence of comorbidities (such as chronic heart, lung, liver, and kidney diseases), elevated IL-6 levels, and NLR were risk factors for RP in adults. We constructed two predictive models containing these relevant parameters, and the results of the receiver operating characteristic (ROC) curves indicated strong predictive utility. Our findings suggest that younger children with more severe symptoms, as well as adult patients with elevated levels of IL-6 and NLR and underlying diseases, are at higher risk of RP occurrence.


Asunto(s)
COVID-19 , Adulto , Humanos , SARS-CoV-2 , Interleucina-6 , Pulmón , Linfocitos
14.
Microorganisms ; 12(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38930464

RESUMEN

Cadmium (Cd) is a highly toxic and cumulative environmental pollutant. Siderophores are heavy metal chelators with high affinity to heavy metals, such as Cd. Ryegrass (Lolium perenne L.) has a potential remediation capacity for soils contaminated by heavy metals. Consequently, using ryegrass alongside beneficial soil microorganisms that produce siderophores may be an effective means to remediate soils contaminated with Cd. In this study, the Bacillus strains WL1210 and CD303, which were previously isolated from the rhizospheres of Nitraria tangutorum in Wulan and Peganum harmala L. in Dachaidan, Qinghai, China, respectively, both arid and sandy environments, were evaluated for heavy metal pollution mitigation. Our quantitative analyses have discerned that the two bacterial strains possess commendable attributes of phosphorus (P) solubilization and potassium (K) dissolution, coupled with the capacity to produce phytohormones. To assess the heavy metal stress resilience of these strains, they were subjected to a cadmium concentration gradient, revealing their incremental growth despite cadmium presence, indicative of a pronounced tolerance threshold. The subsequent phylogenetic analysis, bolstered by robust genomic data from conserved housekeeping genes, including 16S rDNA, gyr B gene sequencing, as well as dnaK and recA, delineated a species-level phylogenetic tree, thereby confirming the strains as Bacillus atrophaeus. Additionally, we identified the types of iron-carrier-producing strains as catechol (WL1210) and carboxylic acid ferrophilin (CD303). A genomic analysis uncovered functional genes in strain CD303 associated with plant growth and iron carrier biosynthesis, such as fnr and iscA. Ryegrass seed germination assays, alongside morphological and physiological evaluations under diverse heavy metal stress, underscored the strains' potential to enhance ryegrass growth under high cadmium stress when treated with bacterial suspensions. This insight probes the strains' utility in leveraging alpine microbial resources and promoting ryegrass proliferation.

15.
Front Microbiol ; 15: 1321989, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633698

RESUMEN

Introduction: Bacillus amyloliquefaciens DGL1, isolated from the arid sandy areas in Dagler, Qinghai Province, China, promotes the growth of Avena sativa variety "Qing Yan 1". Methods: To elucidate the transcriptomic changes in the oat root system following interaction with DGL1 and to reveal the molecular mechanism by which DGL1 promotes oat growth, treatment and control groups of oat roots at 2, 4, 8, and 12 h after inoculation with a suspension of strain DGL1 were analyzed using Illumina high-throughput transcriptome sequencing technology. The differentially expressed genes were determined through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the metabolic pathways and key genes were analyzed. Results: The results showed that 7874, 13,392, 13,169, and 19,026 differentially expressed genes were significantly enriched in the glycolysis/gluconeogenesis pathway, amino acid metabolism, nitrogen metabolism, plant hormone signal transduction, and other related metabolic pathways in the oat roots at 2, 4, 8, and 12 h after inoculation with a DGL1 suspension. The GO and KEGG enrichment analyses revealed that the genes encoding plasma membrane ATPase, phosphoglycerate kinase gene PGK, ammonium transporter protein gene AMT, cellulose synthase gene CSLF6, and growth hormone response family gene IAA18 were significantly upregulated. Discussion: It is hypothesized that the pro-growth mechanism of strain DGL1 in oats is the result of the coordination of multiple pathways through the promotion of oat energy metabolism, phytohormone signaling, secondary metabolite synthesis, and amino acid metabolism.

16.
Brain Res ; 1837: 148959, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670478

RESUMEN

Given the complexity and heterogeneity of Alzheimer's disease (AD) pathology, targeted monotherapy drugs may not be effective. Therefore, synergistic combination therapy of curcumin and Mito Q was proposed and evaluated in a triple-transgenic AD model mice (3 × Tg-AD mice). The cognitive ability was assessed using behavioral tests and typical pathological changes were observed through Western blotting and histological analysis. The results demonstrated a significant enhancement in cognitive ability along with the mitigation of typical AD pathological features such as Aß aggregation, tau phosphorylation, and synaptic damage. Notably, the combination therapy demonstrated superior efficacy over individual drugs alone. These findings provide valuable insights for optimizing the development of AD drugs.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Disfunción Cognitiva , Curcumina , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Ratones Transgénicos , Proteínas tau , Curcumina/farmacología , Curcumina/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Disfunción Cognitiva/tratamiento farmacológico , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo , Fosforilación/efectos de los fármacos , Humanos
17.
Food Funct ; 15(8): 4310-4322, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38529619

RESUMEN

Background: Alzheimer's disease (AD) exerts tremendous pressure on families and society due to its unknown etiology and lack of effective treatment options. Our previous study had shown that Se-methylselenocysteine (SMC) improved the cognition and synaptic plasticity of triple-transgenic AD (3 × Tg-AD) mice and alleviated the related pathological indicators. We are dedicated to investigating the therapeutic effects and molecular mechanisms of SMC on mitochondrial function in 3 × Tg-AD mice. Methods: Transmission electron microscopy (TEM), western blotting (WB), mitochondrial membrane potential (ΔΨm), mitochondrial swelling test, and mitochondrial oxygen consumption test were used to evaluate the mitochondrial morphology and function. Mitophagy flux and autophagy flux were assessed with immunofluorescence, TEM and WB. The Morris water maze test was applied to detect the behavioral ability of mice. Results: The destroyed mitochondrial morphology and function were repaired by SMC through ameliorating mitochondrial energy metabolism, mitochondrial biogenesis and mitochondrial fusion/fission balance in 3 × Tg-AD mice. In addition, SMC ameliorated mitochondria by activating mitophagy flux via the BNIP3/NIX pathway and triggering autophagy flux by suppressing the Ras/Raf/MEK/ERK/mTOR pathway. SMC remarkably increased the cognitive ability of AD mice. Conclusions: This research indicated that SMC might exert its therapeutic effect by protecting mitochondria in 3 × Tg-AD mice.


Asunto(s)
Enfermedad de Alzheimer , Autofagia , Modelos Animales de Enfermedad , Ratones Transgénicos , Mitocondrias , Mitofagia , Selenocisteína , Selenocisteína/análogos & derivados , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Mitofagia/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Selenocisteína/farmacología , Autofagia/efectos de los fármacos , Masculino , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos
18.
Front Plant Sci ; 15: 1378707, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803604

RESUMEN

Introduction: This study used Bacillus amyloliquefaciens DGL1 isolated from the arid sandy land of the Qinghai-Tibetan Plateau as the research strain and investigated the effects of DGL1 on the biomass, physiology, and metabolites of Medicago sativa under different intensities of drought stress to provide a high-quality bacterial source and a theoretical basis for the research and development of biological fertilizer suitable for arid areas. Methods: The exopolysaccharides (EPS), 1-Aminocyclopropane-1-carboxylate deaminase (ACC), and phosphorus solubilizing capacity of DGL1 were determined. The effects of a DGL1 suspension on alfalfa biomass, physiological indexes, degree of peroxidation of cell membranes, and activity of antioxidant enzymes were determined after irrigating roots under drought stress. The effects on soil physicochemical properties were also evaluated, and metabolomics analysis was performed to explore the effect of DGL1 on the metabolites of alfalfa under drought stress. Results: Strain DGL1 produced extracellular polysaccharide EPS and ACC deaminase and was capable of phosphorus solubilization. Treatment with DGL1 increased the biomass of alfalfa under different degrees of drought stress, significantly increased the activities of alfalfa antioxidant enzymes Super Oxide Dismutase (SOD), Peroxidase (POD), and catalase (CAT), reduced the content of MDA and H2O2, and increased the content of quick-acting phosphorus, quick-acting potassium, ammonium nitrogen, and nitrate nitrogen in the soil, thus improving soil fertility. Through metabolomics analysis, DGL1 was shown to affect amino acid metabolic pathways, such as arginine, leucine, glutamate, and tyrosine, as well as the levels of energy-providing polysaccharides and lipids, in alfalfa under 15% PEG-6000 drought stress, enhancing alfalfa's capacity to resist drought stress. Discussion: Strain DGL1 enhances the drought suitability of alfalfa and has the potential for dryland development as a biological agent.

19.
Int Immunopharmacol ; 118: 109993, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36931170

RESUMEN

As the principal ligand of programmed death 1 (PD-1), PD-L1 can induce the exhaustion of effector T cells and the escape of cancer cells through interacting with PD-1 in many solid malignancies. Therefore, targeting the PD-1/PD-L1 axis has become an attractive strategy in cancer immunotherapy. However, at present, no small-molecule agents targeting PD1/PD-L1 pathways have been successfully used in clinical applications. Here, we first found that the natural product Triptolide could significantly reduce the PD-L1 expression on the surface of NSCLC cells. This down-regulation is related to the activity of EGFR signaling pathway. Moreover, the reduction of PD-L1 caused by Triptolide could be substantially rescued by IFN-γ. Furthermore, our findings suggest that Triptolide significantly inhibits the activity of the IFN-γ-JAK-STAT-IRF1 signaling axis, as evidenced by the noticeable reduction in both basal and phosphorylated levels of STAT3. Thus, in NSCLC cells, Triptolide reduces PD-L1 expression both through the EGFR and IFN-γ/JAK1/JAK2/STAT1/STAT3/IRF1 signaling pathways. The results provide new insights into the application of Triptolide in the immune checkpoints treatment of NSCLCs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Línea Celular Tumoral , Interferón gamma/metabolismo , Transducción de Señal , Receptores ErbB/metabolismo , Factor 1 Regulador del Interferón/metabolismo
20.
Heliyon ; 9(10): e20887, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37876435

RESUMEN

Screw-shaft piles have seen extensive adoption in construction and railroad engineering, due to their superior enhanced bearing capacity and cost-effectiveness. While monopiles have been thoroughly examined, composite foundations that include screw-shaft piles have not been studied as extensively. Proper determination of geometric parameters for both the piles and the cushion is a critical aspect of successful design. This paper introduces a comprehensive examination that merges indoor experiments with numerical simulations, aiming to evaluate the bearing capacity, settlement characteristics, and force characteristics of screw-shaft piles under a variety of conditions. This study scrutinizes key components, such as root diameter, pitch, cushion modulus, and the threaded portion's proportion. The research outcomes offer crucial insights for optimizing the design parameters of screw-shaft pile composite foundations. The results indicate that the side resistance of screw-shaft piles initially increases with the threaded section's length, stabilizing at an optimal length of approximately 0.44-0.55 times the pile length (L). Furthermore, although decreasing the pitch improves bearing capacity, it also introduces variations in pile material usage, with optimal bearing performance noted at a pitch approximately equal to the diameter (D). Moreover, screw-shaft piles with thread widths ranging between 0.58D and 0.67D show a significant decrease in stress concentrations, approximately 22 % less than those with a width of 0.5D. By setting the cushion modulus within the 40 MPa-60 MPa range, reduced settlement and optimal pile-soil stress ratios were achieved. These research outcomes provide critical insights into optimizing screw-shaft pile composite foundation design parameters, serving as valuable guidance for designers and engineers in diverse civil engineering projects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA