RESUMEN
The abnormal GGGGCC hexanucleotide repeat expansions (HREs) in C9orf72 cause the fatal neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal dementia. The transcribed RNA HREs, short for r(G4C2)n, can form toxic RNA foci which sequestrate RNA binding proteins and impair RNA processing, ultimately leading to neurodegeneration. Here, we determined the crystal structure of r(G4C2)2, which folds into a parallel tetrameric G-quadruplex composed of two four-layer dimeric G-quadruplex via 5'-to-5' stacking in coordination with a K+ ion. Notably, the two C bases locate at 3'- end stack on the outer G-tetrad with the assistance of two additional K+ ions. The high-resolution structure reported here lays a foundation in understanding the mechanism of neurological toxicity of RNA HREs. Furthermore, the atomic details provide a structural basis for the development of potential therapeutic agents against the fatal neurodegenerative diseases ALS/FTD.
Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Expansión de las Repeticiones de ADN , Demencia Frontotemporal , G-Cuádruplex , ARN , Proteína C9orf72/genética , Proteína C9orf72/química , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Humanos , ARN/química , ARN/genética , Expansión de las Repeticiones de ADN/genética , Cristalografía por Rayos X , Modelos MolecularesRESUMEN
BACKGROUND AND AIMS: Molecular classification is a promising tool for prognosis prediction and optimizing precision therapy for HCC. Here, we aimed to develop a molecular classification of HCC based on the fatty acid degradation (FAD) pathway, fully characterize it, and evaluate its ability in guiding personalized therapy. APPROACH AND RESULTS: We performed RNA sequencing (RNA-seq), PCR-array, lipidomics, metabolomics, and proteomics analysis of 41 patients with HCC, in which 17 patients received anti-programmed cell death-1 (PD-1) therapy. Single-cell RNA sequencing (scRNA-seq) was performed to explore the tumor microenvironment. Nearly, 60 publicly available multiomics data sets were analyzed. The associations between FAD subtypes and response to sorafenib, transarterial chemoembolization (TACE), immune checkpoint inhibitor (ICI) were assessed in patient cohorts, patient-derived xenograft (PDX), and spontaneous mouse model ls. A novel molecular classification named F subtype (F1, F2, and F3) was identified based on the FAD pathway, distinguished by clinical, mutational, epigenetic, metabolic, and immunological characteristics. F1 subtypes exhibited high infiltration with immunosuppressive microenvironment. Subtype-specific therapeutic strategies were identified, in which F1 subtypes with the lowest FAD activities represent responders to compounds YM-155 and Alisertib, sorafenib, anti-PD1, anti-PD-L1, and atezolizumab plus bevacizumab (T + A) treatment, while F3 subtypes with the highest FAD activities are responders to TACE. F2 subtypes, the intermediate status between F1 and F3, are potential responders to T + A combinations. We provide preliminary evidence that the FAD subtypes can be diagnosed based on liquid biopsies. CONCLUSIONS: We identified 3 FAD subtypes with unique clinical and biological characteristics, which could optimize individual cancer patient therapy and help clinical decision-making.
Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Sorafenib/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Multiómica , Medicina de Precisión , Ácidos Grasos , Microambiente TumoralRESUMEN
Unprecedented therapeutic targeting of previously undruggable proteins has now been achieved by molecular-glue-mediated proximity-induced degradation. As a small GTPase, G1 to S phase transition 1 (GSPT1) interacts with eRF1, the translation termination factor, to facilitate the process of translation termination. Studied demonstrated that GSPT1 plays a vital role in the acute myeloid leukemia (AML) and MYC-driven lung cancer. Thus, molecular glue (MG) degraders targeting GSPT1 is a novel and promising approach for treating AML and MYC-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of GSPT1, highlighting the latest advances and challenges in MG degraders, as well as some representative patents. The structure-activity relationships, mechanism of action and pharmacokinetic features of MG degraders are emphasized to provide a comprehensive compendium on the rational design of GSPT1 MG degraders. We hope to provide an updated overview, and design guide for strategies targeting GSPT1 for the treatment of cancer.
Asunto(s)
Química Farmacéutica , Animales , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteolisis , Relación Estructura-ActividadRESUMEN
An unsolved challenge in developing molecular representation is determining an optimal method to characterize the molecular structure. Comprehension of intramolecular interactions is paramount toward achieving this goal. In this study, ComABAN, a new graph-attention-based approach, is proposed to improve the accuracy of molecular representation by simultaneously considering atom-atom, bond-bond and atom-bond interactions. In addition, we benchmark models extensively on 8 public and 680 proprietary industrial datasets spanning a wide variety of chemical end points. The results show that ComABAN has higher prediction accuracy compared with the classical machine learning method and the deep learning-based methods. Furthermore, the trained neural network was used to predict a library of 1.5 million molecules and picked out compounds with a classification result of grade I. Subsequently, these predicted molecules were scored and ranked using cascade docking, molecular dynamics simulations to generate five potential candidates. All five molecules showed high similarity to nanomolar bioactive inhibitors suppressing the expression of HIF-1α, and we synthesized three compounds (Y-1, Y-3, Y-4) and tested their inhibitory ability in vitro. Our results indicate that ComABAN is an effective tool for accelerating drug discovery.
Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Descubrimiento de Drogas/métodos , Simulación de Dinámica Molecular , Estructura MolecularRESUMEN
A series of asymmetric azobenzenes have been synthesized by radical-addition/ring-opening cascade reactions from 2H-indazole in the presence of PIFA and alcohols under blue light irradiation and nitrogen protection. Furthermore, a wide range of functional groups were tolerated and the corresponding products were obtained in 30% to 95% isolated yields. The protocol is characterized by its visible-light initiation, avoidance of metals and photocatalysts, mild reaction conditions, and may find potential use in materials science and medicinal chemistry.
RESUMEN
This experiment was conducted to investigate the impacts of dietary selenium yeast (SeY) on the growth performance, fish body composition, metabolic ability, antioxidant capability, immunity and inflammatory responses in juvenile black carp (Mylopharyngodn piceus). The base diet was supplemented with 0.00, 0.30 and 0.60 g/kg SeY (0.04, 0.59 and 1.15 mg/kg of selenium) to form three isonitrogenous and isoenergetic diets for juvenile black carp with a 60-day. Adequate dietary SeY (0.30 and 0.60 g/kg) could significantly increase the weight gain (WG), special growth rate (SGR) compared to the SeY deficient groups (0.00 g/kg) (P < 0.05). Meanwhile, 0.30 and 0.60 g/kg SeY elevated the mRNA levels of selenoprotein T2 (SEPT2), selenoprotein H (SEPH), selenoprotein S (SEPS) and selenoprotein M (SEPM) in the liver and intestine compared with the SeY deficient groups (P < 0.05). Adequate dietary SeY could promote glucose catabolism and utilization through activating glucose transport (GLUT2), glycolysis (GCK, HK, PFK, PK, PDH), tricarboxylic acid cycle (ICDH and MDH), glycogen synthesis (LG, GCS and GBE) and IRS/PI3K/AKT signal pathway molecules (IRS2b, PI3Kc and AKT1) compared with the SeY deficient groups (P < 0.05). Similarly, adequate dietary SeY could improve lipid transport and triglycerides (TG) synthesis through increasing transcription amounts of CD36, GK, DGAT, ACC and FAS in the fish liver compared with the SeY deficient groups (P < 0.05). In addition, adequate SeY could markedly elevate activities of antioxidant enzymes (T-SOD, CAT, GR, GPX) and contents of T-AOC and GSH, while increased transcription amounts of Nrf2, Cu/Zn-SOD, CAT, and GPX in fish liver and intestine (P < 0.05). However, adequate SeY notably decreased contents of MDA, and the mRNA transcription levels of Keap1 in the intestine compared with the SeY deficient groups (P < 0.05). Adequate SeY markedly increased amounts or levels of the immune factors (ALP, ACP, LZM, C3, C4 and IgM) and the transcription levels of innate immune-related functional genes in the liver and intestine (LZM, C3 and C9) compared to the SeY deficient groups (P < 0.05). Moreover, adequate SeY could notably reduce levels of IL-8, IL-1ß, and IFN-γ and elevate TGF-1ß levels in fish intestine (P < 0.05). The transcription levels of MAPK13, MAPK14 and NF-κB p65 were notably reduced in fish intestine treated with 0.30 and 0.60 g/kg SeY (P < 0.05). In conclusion, these results suggested that 0.30 and 0.60 g/kg SeY could not only improve growth performance, increase Se, glucose and lipid metabolic abilities, enhance antioxidant capabilities and immune responses, but also alleviate inflammation, thereby supplying useful reference for producing artificial feeds in black carp.
Asunto(s)
Carpas , Selenio , Animales , Antioxidantes/metabolismo , Carpas/genética , Carpas/metabolismo , Selenio/metabolismo , Saccharomyces cerevisiae/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Inmunidad Innata , Fosfatidilinositol 3-Quinasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Suplementos Dietéticos , Dieta/veterinaria , ARN Mensajero , Glucosa , Selenoproteínas/metabolismo , Lípidos , Superóxido Dismutasa/metabolismo , Alimentación Animal/análisis , Proteínas de Peces/genética , Proteínas de Peces/metabolismoRESUMEN
Electron-rich and hindered aryl chlorides are the most challenging substrates in Suzuki-Miyaura cross-coupling (SMC) reactions. Herein, we report a highly efficient catalytic system for the SMC reaction using trace amounts of commercially available catalysts [Pd(PPh3)4/(t-Bu)PCy2; Pd loading as low as 9.5 × 10-5 mol%]. This catalytic system can efficiently couple deactivated and sterically hindered aryl chlorides with various substituted phenylboronic acids, even in one-pot multiple coupling reactions (yield of products up to 92%). The impact of solvents on SMC reactions and the mechanisms of by-product formation in aryl boronic acid couplings are analyzed using density functional theory (DFT). Utilizing trace amounts of commercially available catalysts avoids complex synthesis, reduces costs, and minimizes metal residues.
RESUMEN
A series of chromone-deferiprone hybrids were designed, synthesized, and evaluated as inhibitors of human monoamine oxidase B (hMAO-B) with iron-chelating activity for the treatment of Alzheimer's disease (AD). The majority exhibited moderate inhibitory activity towards hMAO-B and potent iron-chelating properties. Particularly, compound 25c demonstrated remarkable selectivity against hMAO-B with an IC50 value of 1.58 µM and potent iron-chelating ability (pFe3+ = 18.79) comparable to that of deferiprone (pFe3+ = 17.90). Molecular modeling and kinetic studies showed that 25c functions as a non-competitive hMAO-B inhibitor. According to the predicted results, compound 25c can penetrate the blood-brain barrier (BBB). Additionally, it has been proved to display significant antioxidant activity and the ability to inhibit neuronal ferroptosis. More importantly, compound 25c reduced the cognitive impairment induced by scopolamine and showed significant non-toxicity in short-term toxicity assays. In summary, compound 25c was identified as a potential anti-AD agent with hMAO-B inhibitory, iron-chelating and anti-ferroptosis activities.
Asunto(s)
Enfermedad de Alzheimer , Cromonas , Deferiprona , Quelantes del Hierro , Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/síntesis química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Quelantes del Hierro/farmacología , Quelantes del Hierro/química , Quelantes del Hierro/síntesis química , Deferiprona/farmacología , Deferiprona/química , Monoaminooxidasa/metabolismo , Humanos , Cromonas/química , Cromonas/farmacología , Cromonas/síntesis química , Relación Estructura-Actividad , Animales , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Ferroptosis/efectos de los fármacos , Estructura Molecular , Simulación del Acoplamiento Molecular , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Relación Dosis-Respuesta a DrogaRESUMEN
5-Aminolevulinic acid (ALA) and its derivatives, serving as the endogenous precursor of the photosensitizer (PS) protoporphyrin IX (PpIX), successfully applied in tumor imaging and photodynamic therapy (PDT). ALA and its derivatives have been used to treat actinic keratosis (AK), basal cell carcinoma (BCC), and improve the detection of superficial bladder cancer. However, the high hydrophilicity of ALA and the conversion of PpIX to heme have limited the accumulation of PpIX, hindering the efficiency and potential application of ALA-PDT. This study aims to evaluate the PDT activity of three rationally designed series of ALA-HPO prodrugs, which were based on enhancing the lipophilicity of the prodrugs and reducing the labile iron pool (LIP) through HPO iron chelators to promote PpIX accumulation. Twenty-four ALA-HPO conjugates, incorporating amide, amino acid, and ester linkages, were synthesized. Most of the conjugates, exhibited no dark-toxicity to cells, according to bioactivity evaluation. Ester conjugates 19a-g showed promoted phototoxicity when tested on tumor cell lines, and this increased phototoxicity was strongly correlated with elevated PpIX levels. Among them, conjugate 19c emerged as the most promising (HeLa, IC50 = 24.25 ± 1.43 µM; MCF-7, IC50 = 43.30 ± 1.76 µM; A375, IC50 = 28.03 ± 1.00 µM), displaying superior photodynamic anticancer activity to ALA (IC50 > 100 µM). At a concentration of 80 µM, the fluorescence intensity of PpIX induced by compound 19c in HeLa, MCF-7, and A375 cells was 18.9, 5.3, and 2.8 times higher, respectively, than that induced by ALA. In conclusion, cellular phototoxicity showed a strong correlation with intracellular PpIX fluorescence levels, indicating the potential application of ALA-HPO conjugates in ALA-PDT.
Asunto(s)
Ácido Aminolevulínico , Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Fotoquimioterapia , Fármacos Fotosensibilizantes , Humanos , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Piridonas/farmacología , Piridonas/química , Piridonas/síntesis química , Línea Celular Tumoral , Protoporfirinas/química , Protoporfirinas/farmacología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Supervivencia Celular/efectos de los fármacos , Profármacos/farmacología , Profármacos/química , Profármacos/síntesis químicaRESUMEN
BACKGROUND AND AIM: The objective of our study was to examine the association between composite dietary antioxidant index (CDAI) and atherosclerotic cardiovascular disease (ASCVD) in adults. METHODS AND RESULTS: Data was gathered from the National Health and Nutrition Examination Survey (NHANES) between 2001 and 2018. To examine the connection between CDAI and ASCVD, multiple logistic regression analyses were performed. Restricted cubic splines were utilized to examine non-linear correlations, and the inflection point was identified using a two-piecewise linear regression approach. Subgroup analyses were performed to demonstrate stability of results. A total of 44,494 individuals were included in the study. The multivariate logistic regression model was fully adjusted and revealed an odds ratio of 0.968 (95% CI: 0.959-0.978; P < 0.001) for the correlation between CDAI and ASCVD. Furthermore, individuals in the highest quartile of CDAI exhibited a decreased risk of ASCVD compared to those in the lowest quartile [0.716 (0.652-0.787); P < 0.001]. Moreover, restricted cubic spline (RCS) analysis revealed non-linear relationship between CDAI and ASCVD, with inflection point at -0.387. The analysis of subgroups showed that the importance of CDAI remained consistent among various age, sex, race, body mass index (BMI), and physical activity. CONCLUSIONS: Our research revealed an inverse and non-linear relationship between CDAI and ASCVD in adults. The implications of these findings are significant for future studies and the formulation of dietary guidelines.
Asunto(s)
Antioxidantes , Aterosclerosis , Dieta Saludable , Encuestas Nutricionales , Factores Protectores , Humanos , Masculino , Estudios Transversales , Femenino , Persona de Mediana Edad , Adulto , Estados Unidos/epidemiología , Medición de Riesgo , Aterosclerosis/epidemiología , Aterosclerosis/prevención & control , Aterosclerosis/sangre , Aterosclerosis/diagnóstico , Anciano , Valor Nutritivo , Factores de Riesgo , Dieta/efectos adversos , Factores de Riesgo de Enfermedad Cardiaca , PronósticoRESUMEN
INTRODUCTION: This study was designed to analyze clinical and radiographic features of adult patients coexisting with NMDAR-IgG and MOG-IgG. METHODS: Eleven adult patients coexisting with NMDAR-IgG and MOG-IgG were collected from Xiangya Hospital, Central South University, between June 2017 and December 2021. Fifty-five patients with anti-NMDAR encephalitis and 49 with MOG-AD were served as controls. RESULTS: Onset age was 27 (IQR 20-34) years old. Seizures and psychotic symptoms were prominent symptoms. Ten of eleven patients presented abnormal T2/FLAIR hyperintensity, mainly involving the cortex, brainstem, and optic nerve. Compared with the NMDAR IgG ( +)/MOG IgG ( -) group, the NMDAR IgG ( +)/MOG IgG ( +) group showed more ataxia symptoms (27.3% vs. 3.6%, P = 0.037), while more T2/FLAIR hyperintensity lesions were found in the brainstem (54.5% vs. 7.3%, P < 0.001) and optic nerve (27.3% vs. 1.8%, P = 0.011) with more abnormal MRI patterns (90.9% vs. 41.8%, P = 0.003). In comparison with the NMDAR IgG ( -)/MOG IgG ( +) group, the NMDAR IgG ( +)/MOG IgG ( +) group had more seizures (72.7% vs. 24.5%, P = 0.007) and mental symptoms (45.5% vs. 0, P < 0.001). The NMDAR IgG ( +)/MOG IgG ( +) group tended to be treated with corticosteroids alone (63.6% vs. 20.0%, P = 0.009), more prone to recur (36.5% vs. 7.3%, P = 0.028) and lower mRS score (P = 0.036) at the last follow-up than pure anti-NMDAR encephalitis. CONCLUSION: The symptoms of the NMDAR IgG ( +)/MOG IgG ( +) group were more similar to anti-NMDAR encephalitis, while MRI patterns overlapped more with MOG-AD. Detecting both NMDAR-IgG and MOG-IgG maybe warranted in patients with atypical encephalitis symptoms and demyelinating lesions in infratentorial regions.
Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Autoanticuerpos , Inmunoglobulina G , Glicoproteína Mielina-Oligodendrócito , Humanos , Adulto , Masculino , Femenino , Glicoproteína Mielina-Oligodendrócito/inmunología , Inmunoglobulina G/sangre , Adulto Joven , Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico por imagen , Encefalitis Antirreceptor N-Metil-D-Aspartato/complicaciones , Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Autoanticuerpos/sangre , Imagen por Resonancia Magnética , Receptores de N-Metil-D-Aspartato/inmunología , Persona de Mediana EdadRESUMEN
Toll-like receptor 4 (Tlr) interactor with leucine-rich repeats (Tril) functions as a Tlr coreceptor to mediate innate immunity in adults. In Xenopus embryos, Tril triggers degradation of the transforming growth factor ß (Tgf-ß) family inhibitor, Smad7. This enhances bone morphogenetic protein (Bmp) signaling to enable ventral mesoderm to commit to a blood fate. Here, we show that Tril simultaneously dampens Nodal signaling by catalytically activating the ubiquitin ligase NEDD4 Like (Nedd4l). Nedd4l then targets Nodal receptors for degradation. How Tril signals are transduced in a nonimmune context is unknown. We identify the ubiquitin ligase Pellino2 as a protein that binds to the cytoplasmic tail of Tril and subsequently forms a complex with Nedd4l and another E3 ligase, TNF-receptor associated factor 6 (Traf6). Pellino2 and Traf6 are essential for catalytic activation of Nedd4l, both in Xenopus and in mammalian cells. Traf6 ubiquitinates Nedd4l, which is then recruited to membrane compartments where activation occurs. Collectively, our findings reveal that Tril initiates a noncanonical Tlr-like signaling cascade to activate Nedd4l, thereby coordinately regulating the Bmp and Nodal arms of the Tgf-ß superfamily during vertebrate development.
Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/fisiología , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Proteína Nodal/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal/fisiología , Animales , Desarrollo Embrionario , Células HEK293 , Células HeLa , Humanos , Ubiquitina-Proteína Ligasas Nedd4/genética , Fosforilación , XenopusRESUMEN
OBJECTIVE: To delineate the efficacy and safety profile of hemodiafiltration with endogenous reinfusion (HFR) for uremic toxin removal in patients undergoing maintenance hemodialysis (MHD). METHODS: Patients who have been on MHD for a period of at least 3 months were enrolled. Each subject underwent one HFR and one hemodiafiltration (HDF) treatment. Blood samples were collected before and after a single HFR or HDF treatment to test uremic toxin levels and to calculate clearance rate. The primary efficacy endpoint was to compare uremic toxin levels of indoxyl sulfate (IS), λ-free light chains (λFLC), and ß2-microglobulin (ß2-MG) before and after HFR treatment. Secondary efficacy endpoints was to compare the levels of urea, interleukin-6 (IL-6), P-cresol, chitinase-3-like protein 1 (YKL-40), leptin (LEP), hippuric acid (HPA), trimethylamine N-oxide (TMAO), asymmetric dimethylarginine (ADMA), tumor necrosis factor-α (TNF-α), fibroblast growth factor 23 (FGF23) before and after HFR treatment. The study also undertook a comparative analysis of uremic toxin clearance between a single HFR and HDF treatment. Meanwhile, the lever of serum albumin and branched-chain amino acids before and after a single HFR or HDF treatment were compared. In terms of safety, the study was meticulous in recording vital signs and the incidence of adverse events throughout its duration. RESULTS: The study enrolled 20 patients. After a single HFR treatment, levels of IS, λFLC, ß2-MG, IL-6, P-cresol, YKL-40, LEP, HPA, TMAO, ADMA, TNF-α, and FGF23 significantly decreased (p < 0.001 for all). The clearance rates of λFLC, ß2-MG, IL-6, LEP, and TNF-α were significantly higher in HFR compared to HDF (p values: 0.036, 0.042, 0.041, 0.019, and 0.036, respectively). Compared with pre-HFR and post-HFR treatment, levels of serum albumin, valine, and isoleucine showed no significant difference (p > 0.05), while post-HDF, levels of serum albumin significantly decreased (p = 0.000). CONCLUSION: HFR treatment effectively eliminates uremic toxins from the bloodstream of patients undergoing MHD, especially protein-bound toxins and large middle-molecule toxins. Additionally, it retains essential physiological compounds like albumin and branched-chain amino acids, underscoring its commendable safety profile.
Asunto(s)
Cresoles , Hemodiafiltración , Metilaminas , Humanos , Hemodiafiltración/efectos adversos , Proyectos Piloto , Tóxinas Urémicas , Proteína 1 Similar a Quitinasa-3 , Interleucina-6 , Factor de Necrosis Tumoral alfa , Diálisis Renal , Aminoácidos de Cadena Ramificada , Albúmina SéricaRESUMEN
Neuroinflammation is a critical factor that contributes to neurological impairment and is closely associated with the onset and progression of neurodegenerative diseases. In the central nervous system (CNS), microglia play a pivotal role in the regulation of inflammation through various signaling pathways. Therefore, mitigating microglial inflammation is considered a promising strategy for restraining neuroinflammation. Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and exhibit clear neuroprotective effects in various disease models. However, whether the activation of mAChRs can harness benefits in neuroinflammation remains largely unexplored. In this study, the anti-inflammatory effects of mAChRs were found in a neuroinflammation mouse model. The expression of various cytokines and chemokines was regulated in the brains and spinal cords after the administration of mAChR agonists. Microglia were the primary target cells through which mAChRs exerted their anti-inflammatory effects. The results showed that the activation of mAChRs decreased the pro-inflammatory phenotypes of microglia, including the expression of inflammatory cytokines, morphological characteristics, and distribution density. Such anti-inflammatory modulation further exerted neuroprotection, which was found to be even more significant by the direct activation of neuronal mAChRs. This study elucidates the dual mechanisms through which mAChRs exert neuroprotective effects in central inflammatory responses, providing evidence for their application in inflammation-related neurological disorders.
Asunto(s)
Modelos Animales de Enfermedad , Microglía , Enfermedades Neuroinflamatorias , Receptores Muscarínicos , Animales , Microglía/metabolismo , Microglía/patología , Ratones , Receptores Muscarínicos/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Citocinas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Agonistas Muscarínicos/farmacología , Masculino , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Encéfalo/patologíaRESUMEN
BACKGROUND: Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici. However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P. capsici infection is limited. METHODS: A comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P. capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi). RESULTS: More genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P. capsici with fine regulation by the Ca2+- and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P. capsici. CONCLUSION: The candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper-P. capsici.
Asunto(s)
Capsicum , Phytophthora , Piper nigrum , Transcriptoma , Phytophthora/fisiología , Piper nigrum/genética , Metaboloma , Flavonoides , Enfermedades de las Plantas/genéticaRESUMEN
Hydrogen cyanide (HCN) is a well-known toxic compound in many fields. The trace amount of endogenous HCN in human exhalation has been associated with the presence of Pseudomonas aeruginosa (PA) infection in cystic fibrosis (CF) patients. Online monitoring of HCN profile is promising to screen PA infection rapidly and accurately. In this study, a gas flow-assisted negative photoionization (NPI) mass spectrometry method was developed for monitoring the single-exhalation HCN profile. The sensitivity could be optimized by introducing helium to eliminate the humidity influence and reduce the low mass cutoff effect, with improvements of a factor 150 observed. By employing a purging gas procedure and minimizing the length of the sample line, the residual and response time were greatly reduced. The limit of detection (LOD) of 0.3 ppbv and time resolution of 0.5 s were achieved. HCN profiles of exhalations from different volunteers before or after gargling with water were detected to show the performance of the method. All profiles showed a sharp peak and a stable end-tidal plateau, representing the concentration of oral cavity and end-tidal gas, respectively. The HCN concentration based on the plateau of the profile showed better reproducibility and accuracy, which indicates this method has potential application in the detection of PA infection in CF patients.
Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Espiración , Reproducibilidad de los Resultados , Pruebas Respiratorias/métodos , Infecciones por Pseudomonas/diagnóstico , Espectrometría de Masas/métodosRESUMEN
Ethyl carbamate (EC), a carcinogenic compound, is naturally produced in fermented foods and alcoholic beverages. Rapid and accurate measurement of EC is necessary and important for quality control and safety evaluation of Chinese liquor, a traditionally distilled spirit with the highest consumption in China, but it remains a great challenge. In this work, a direct injection mass spectrometry (DIMS) with time-resolved flash-thermal-vaporization (TRFTV) and acetone-assisted high-pressure photoionization (HPPI) strategy has been developed. EC was rapidly separated from the main matrix components, ethyl acetate (EA) and ethanol, by the TRFTV sampling strategy due to the retention time difference of these three compounds with large boiling point differences on the inner wall of a poly(tetrafluoroethylene) (PTFE) tube. Therefore, the matrix effect of EA and ethanol was effectively eliminated. The acetone-assisted HPPI source was developed for efficient ionization of EC through a photoionization-induced proton transfer reaction between EC molecules and protonated acetone ions. The accurate quantitative analysis of EC in liquor was achieved by introducing an internal standard method (ISM) using deuterated EC (d5-EC). As a result, the limit of detection (LOD) for EC was 8.88 µg/L with the analysis time of only 2 min, and the recoveries ranged from 92.3 to 113.1%. Finally, the prominent capability of the developed system was demonstrated by rapid determination of trace EC in Chinese liquors with different flavor types, exhibiting wide potential applications in online quality control and safety evaluation of not only Chinese liquors but also other liquor and alcoholic beverages.
RESUMEN
The main proteases (Mpro ) are highly conserved cysteine-rich proteins that can be covalently modified by numerous natural and synthetic compounds. Herein, we constructed an integrative approach to efficiently discover covalent inhibitors of Mpro from complex herbal matrices. This work begins with biological screening of 60 clinically used antiviral herbal medicines, among which Lonicera japonica Flos (LJF) demonstrated the strongest anti-Mpro effect (IC50 = 37.82 µg/mL). Mass spectrometry (MS)-based chemical analysis and chemoproteomic profiling revealed that LJF extract contains at least 50 constituents, of which 22 exhibited the capability to covalently modify Mpro . We subsequently verified the anti-Mpro effects of these covalent binders. Gallic acid and quercetin were found to potently inhibit severe acute respiratory syndrome coronavirus 2 Mpro in dose- and time- dependent manners, with the IC50 values below 10 µM. The inactivation kinetics, binding affinity and binding mode of gallic acid and quercetin were further characterized by fluorescence resonance energy transfer, surface plasmon resonance, and covalent docking simulations. Overall, this study established a practical approach for efficiently discovering the covalent inhibitors of Mpro from herbal medicines by integrating target-based high-throughput screening and MS-based assays, which would greatly facilitate the discovery of key antiviral constituents from medicinal plants.
Asunto(s)
COVID-19 , Plantas Medicinales , Humanos , SARS-CoV-2 , Ensayos Analíticos de Alto Rendimiento , Quercetina/farmacología , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Extractos Vegetales/farmacología , Antivirales/farmacología , Antivirales/química , Ácido Gálico/farmacología , Simulación del Acoplamiento MolecularRESUMEN
Glioblastoma (GBM) is a highly lethal neurological tumor that presents significant challenge for clinicians due to its heterogeneity and high mortality rate. Despite extensive research, there is currently no effective drug treatment available for GBM. Research evidence has consistently demonstrated that the epidermal growth factor receptor (EGFR) promotes tumor progression and is associated with poor prognosis in several types of cancer. In glioma, EGFR abnormal amplification is reported in approximately 40% of GBM patients, with overexpression observed in 60% of cases, and deletion or mutation in 24% to 67% of patients. In our study, Sitravatinib, a potential EGFR inhibitor, was identified through molecular docking screening based on protein structure. The targeting of EGFR and the tumor inhibitory effect of Sitravatinib on glioma were verified through cellular and in vivo experiments, respectively. Our study also revealed that Sitravatinib effectively inhibited GBM invasive and induced DNA damage and cellular senescence. Furthermore, we observed a novel cell death phenotype induced by Sitravatinib, which differed from previously reported programmed death patterns such as apoptosis, pyroptosis, ferroptosis, and necrosis.
Asunto(s)
Neoplasias Encefálicas , Receptores ErbB , Glioblastoma , Humanos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Receptores ErbB/antagonistas & inhibidores , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Simulación del Acoplamiento MolecularRESUMEN
Myocardial infarction (MI) has been a serious threat to the health of modern people for a long time. The introduction of tissue engineering (TE) therapy into the treatment of MI is one of the most promising therapeutic schedules. Considering the intrinsic electrophysiological activity of cardiac tissue, we utilized 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNs) with excellent biocompatibility as the substrate, and sulfonated carbon nanotubes (SCNTs) with remarkable conductivity and water dispersibility as the electrically active material, to prepare TOCN-SCNT composite hydrogels. By adjusting the content of SCNTs from 0 to 5 wt %, TOCN-SCNT hydrogels exhibited conductivity ranging from 5.2 × 10-6 to 6.2 × 10-2 S cm-1. Just with 1 wt % incorporation of SCNTs, the hydrogel played a role in promoting the adhesive growth and proliferation of cells. The hydrogel expressed higher Connexin 43 (Cx-43) and cardiac troponin-T proteins compared with controls, demonstrating great potential in constructing a myocardial TE scaffold.