Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 44(10)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38326037

RESUMEN

The inferior colliculus (IC) represents a crucial relay station in the auditory pathway, located in the midbrain's tectum and primarily projecting to the thalamus. Despite the identification of distinct cell classes based on various biomarkers in the IC, their specific contributions to the organization of auditory tectothalamic pathways have remained poorly understood. In this study, we demonstrate that IC neurons expressing parvalbumin (ICPV+) or somatostatin (ICSOM+) represent two minimally overlapping cell classes throughout the three IC subdivisions in mice of both sexes. Strikingly, regardless of their location within the IC, these neurons predominantly project to the primary and secondary auditory thalamic nuclei, respectively. Cell class-specific input tracing suggested that ICPV+ neurons primarily receive auditory inputs, whereas ICSOM+ neurons receive significantly more inputs from the periaqueductal gray and the superior colliculus (SC), which are sensorimotor regions critically involved in innate behaviors. Furthermore, ICPV+ neurons exhibit significant heterogeneity in both intrinsic electrophysiological properties and presynaptic terminal size compared with ICSOM+ neurons. Notably, approximately one-quarter of ICPV+ neurons are inhibitory neurons, whereas all ICSOM+ neurons are excitatory neurons. Collectively, our findings suggest that parvalbumin and somatostatin expression in the IC can serve as biomarkers for two functionally distinct, parallel tectothalamic pathways. This discovery suggests an alternative way to define tectothalamic pathways and highlights the potential usefulness of Cre mice in understanding the multifaceted roles of the IC at the circuit level.


Asunto(s)
Colículos Inferiores , Parvalbúminas , Femenino , Masculino , Ratones , Animales , Parvalbúminas/metabolismo , Colículos Inferiores/fisiología , Neuronas/fisiología , Vías Auditivas/fisiología , Somatostatina/metabolismo
2.
Neuron ; 111(20): 3270-3287.e8, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37557180

RESUMEN

The expression of defensive responses to alerting sensory cues requires both general arousal and a specific arousal state associated with defensive emotions. However, it remains unclear whether these two forms of arousal can be regulated by common brain regions. We discovered that the medial sector of the auditory thalamus (ATm) in mice is a thalamic hub controlling both general and defensive arousal. The spontaneous activity of VGluT2-expressing ATm (ATmVGluT2+) neurons was correlated with and causally contributed to wakefulness. In sleeping mice, sustained ATmVGluT2+ population responses were predictive of sensory-induced arousal, the likelihood of which was markedly decreased by inhibiting ATmVGluT2+ neurons or multiple downstream pathways. In awake mice, ATmVGluT2+ activation led to heightened arousal accompanied by excessive anxiety and avoidance behavior. Notably, blocking their neurotransmission abolished alerting stimuli-induced defensive behaviors. These findings may shed light on the comorbidity of sleep disturbances and abnormal sensory sensitivity in specific brain disorders.


Asunto(s)
Nivel de Alerta , Tálamo , Ratones , Animales , Nivel de Alerta/fisiología , Tálamo/fisiología , Vigilia/fisiología , Neuronas/fisiología , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA