Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 511, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807184

RESUMEN

BACKGROUND: Myopia is one of the eye diseases that can damage the vision of young people. This study aimed to explore the protective role of miR-92b-3p against DNA damage and apoptosis in retinal tissues of negative lens-induced myopic (LIM) guinea pigs by targeting BTG2. METHODS: Biometric measurements of ocular parameters, flash electroretinogram (FERG), and retinal thickness (RT) were performed after miR-92b-3p intravitreal injection in LIM guinea pigs. The apoptotic rate was detected by Annexin V-FITC/PI double staining, and the change in mitochondrial membrane potential was measured by JC-1 staining. Retinal apoptosis and expression of p53, BTG2, and CDK2 were explored by TdT-mediated dUTP-biotin nick labeling (TUNEL) and immunofluorescence staining assays, respectively. BTG2 and its upstream and downstream molecules at gene and protein levels in retinal tissues were measured by real-time quantitative PCR (qPCR) and Western blotting. RESULTS: Compared with normal controls (NC), the ocular axial length of LIM guinea pig significantly increased, whereas refraction decreased. Meanwhile, dMax-a and -b wave amplitudes of ERG declined, retinal thickness was decreased, the number of apoptotic cells and apoptotic rate in LIM eyes was exaggerated, and the mitochondrial membrane potential significantly decreased. In addition, results of qPCR and Western blot assays showed that the expression levels of p53, BTG2, CDK2, and BAX in LIM guinea pigs were higher than the levels of the NC group, whereas the BCL-2 expression level was decreased. By contrast, the miR-92b-3p intravitreal injection in LIM guinea pigs could significantly inhibit axial elongation, alleviate DNA damage and apoptosis, and thus protect guinea pigs against myopia. CONCLUSION: In conclusion, p53 and BTG2 were activated in the retinal tissue of myopic guinea pigs, and the activated BTG2 could elevate the expression of CDK2 and BAX, and attenuate the expression of BCL-2, which in turn promote apoptosis and eventually lead to retinal thinning and impaired visual function in myopic guinea pigs. The miR-92b-3p intravitreal injection can attenuate the elongation of ocular length and retinal thickness, and inhibit the CDK2, BAX, and p53 expression by targeting BTG2, thereby ameliorating DNA damage and apoptosis in LIM guinea pigs and protecting ocular tissues.


Asunto(s)
Apoptosis , Daño del ADN , MicroARNs , Miopía , Retina , Animales , Cobayas , MicroARNs/genética , MicroARNs/metabolismo , Retina/patología , Retina/metabolismo , Miopía/metabolismo , Miopía/genética , Miopía/patología , Potencial de la Membrana Mitocondrial , Secuencia de Bases , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Electrorretinografía , Modelos Animales de Enfermedad
2.
Mol Biol Rep ; 51(1): 454, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536516

RESUMEN

Dysregulation of oxidative stress serves as a pivotal predisposing or exacerbating factor in the intricate development of numerous pathological processes and diseases. In recent years, substantial evidence has illuminated the crucial role of reactive oxygen species (ROS) in many fundamental cellular functions, including proliferation, inflammation, apoptosis, and gene expression. Notably, producing free radicals within ROS profoundly impacts a wide range of biomolecules, such as proteins and DNA, instigating cellular damage and impairing vital cellular functions. Consequently, oxidative stress emerges as a closely intertwined factor across diverse disease spectra. Remarkably, the pathogenesis of several eye diseases, including age-related macular degeneration, glaucoma, and diabetic retinopathy, manifests an intrinsic association with oxidative stress. In this comprehensive review, we briefly summarize the recent progress in elucidating the intricate role of oxidative stress in the development of ophthalmic diseases, shedding light on potential therapeutic avenues and future research directions.


Asunto(s)
Antioxidantes , Glaucoma , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Ojo/metabolismo , Estrés Oxidativo , Glaucoma/tratamiento farmacológico
3.
Int J Med Sci ; 21(9): 1589-1603, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006849

RESUMEN

Myopia represents a significant public health concern worldwide, particularly affecting the ocular health of children and adolescents. The escalating prevalence of myopia in recent years underscores its urgency as a health issue among this demographic. Research indicates a profound connection between the onset of myopia, inflammatory processes and fibrosis. Individuals with inflammatory conditions like allergic conjunctivitis, choroiditis, systemic lupus erythematosus, and diabetes exhibit a heightened susceptibility to myopia. Conversely, myopic patients are at an increased risk of developing ocular inflammatory disorders, notably idiopathic multifocal choroiditis. We postulate that the expression of inflammatory markers, including NF-κB, TGF-ß, IL-1ß, IL-6, IL-8, and TNF-α, may contribute to the chronic inflammatory state observed in myopia. This paper highlights a substantial correlation between myopia and inflammation, suggesting the potential efficacy of anti-inflammatory agents in managing inflammation and slowing myopia progression.


Asunto(s)
Inflamación , Miopía , Niño , Humanos , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Progresión de la Enfermedad , Inflamación/patología , Miopía/epidemiología , Miopía/metabolismo , Miopía/patología
4.
Arch Biochem Biophys ; 743: 109663, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290701

RESUMEN

OBJECTIVE: This study aimed to investigate the regulatory role of the PI3K/AKT/ERK signaling pathway in retinal fibrosis in -6.0 diopter (D) lens-induced myopic (LIM) guinea pigs. METHODS: Biological measurements of eye tissues were performed on guinea pigs to obtain their refraction, axial length, retinal thickness, physiological function, and fundus retinal status. In addition, Masson staining and immunohistochemical (IHC) assay were further done to explore the changes in retinal morphology after myopic induction. Meanwhile, hydroxyproline (HYP) content was measured to evaluate the degree of retinal fibrosis. Moreover, the levels of the PI3K/AKT/ERK signaling pathway and fibrosis-related molecules in retinal tissues including matrix metalloproteinase 2(MMP2), collagen type I (Collagen I), and α-smooth muscle actin (α-SMA) were detected by real-time quantitative PCR (qPCR) and Western blot. RESULTS: The LIM guinea pigs showed a significant myopic shift in refractive error and an increase in axial length compared with those of the normal control (NC) group. Masson staining, hydroxyproline content determination, and IHC showed an increase in retinal fibrosis. After myopic induction, qPCR and western blot analyses showed that phosphatidylinositol-3-kinase catalytic subunit α (PIK3CA), protein kinase B (AKT), extracellular regulated protein kinase 1/2 (ERK1/2), MMP2, Collagen I, and α-SMA were consistently elevated in the LIM group than those in the NC group. CONCLUSION: The PI3K/AKT/ERK signaling pathway was activated in the retinal tissues of myopic guinea pigs, which exaggerated fibrotic lesions and reduced retinal thickness, ultimately leading to retinal physiological dysfunctions in myopic guinea pigs.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Miopía , Animales , Cobayas , Metaloproteinasa 2 de la Matriz/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Hidroxiprolina , Miopía/metabolismo , Transducción de Señal , Fibrosis , Colágeno
5.
Cell Biochem Biophys ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913283

RESUMEN

The occurrence and development of ophthalmic diseases are related to the dysfunction of eye tissues. Ubiquitin is an important form of protein post-translational modification, which plays an essential role in the occurrence and development of diseases through specific modification of target proteins. Ubiquitination governs a variety of intracellular signal transduction processes, including proteasome degradation, DNA damage repair, and cell cycle progression. Studies have found that ubiquitin can play a role in eye diseases such as cataracts, glaucoma, keratopathy, retinopathy, and eye tumors. In this paper, the role of protein ubiquitination in eye diseases was reviewed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA