Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(34): 18737-18741, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37584696

RESUMEN

Herein, we report the introduction of steric hindrance in molecular building blocks to prevent π···π stacking, thus allowing two-dimensional (2D) covalent organic sheets to form three-dimensional (3D) covalent organic frameworks (COFs) through entanglement. Starting from the rationally designed precursors containing a bulky anthracene unit in the vertical direction, a highly crystalline COF (3D-An-COF) was successfully synthesized. Very interestingly, 3D-An-COF was determined as an entangled 2D square net (sql) structure, and the high-resolution data (1.1 Å) obtained by the continuous rotation electron diffraction technique allowed us to directly locate all non-hydrogen atoms. Structurally, the presence of an anthracene group outside the C2h symmetry plane strongly reduces the π···π interactions and promotes the formation of square entanglements. In addition, 3D-An-COF is fluorescent and can be used as a sensor to detect the trace amount of antibiotics in water. This study provides a new strategy for the structural diversification of 3D COFs and will certainly motivate us to construct more entangled COFs for interesting applications in the future.

2.
J Am Chem Soc ; 145(20): 11276-11281, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37167629

RESUMEN

Dimensional isomers, defined in reticular chemistry as frameworks consisting of identical molecular building blocks but extended in two or three dimensions (2D or 3D), are an important type of framework isomers that have never been isolated. Herein, we report the crystallization of dimensional isomers in covalent organic frameworks (COFs) for the first time. By polymerization of the same molecular building blocks at different temperatures, both 2D and 3D COFs were successfully constructed due to the temperature-induced conformational changes of precursors from planar to tetrahedral. In addition, the non-fluorescent 2D COF can be gradually converted into the fluorescent 3D COF by increasing the temperature under solvothermal conditions. Therefore, it is reasonable to crystallize the dimensional isomers of reticular materials by controlling the conformation of molecular building blocks, and more examples can be expected. Since the obtained dimensional isomers show different properties and functions, this work will definitely motivate us to design reticular materials for target applications in the future.

3.
Angew Chem Int Ed Engl ; 62(49): e202314185, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37858292

RESUMEN

Developing cost-effective and sustainable acidic water oxidation catalysts requires significant advances in material design and in-depth mechanism understanding for proton exchange membrane water electrolysis. Herein, we developed a single atom regulatory strategy to construct Co-Co dinuclear active sites (DASs) catalysts that atomically dispersed zirconium doped Co9 S8 /Co3 O4 heterostructure. The X-ray absorption fine structure elucidated the incorporation of Zr greatly facilitated the generation of Co-Co DASs layer with stretching of cobalt oxygen bond and S-Co-O heterogeneous grain boundaries interfaces, engineering attractive activity of significantly reduced overpotential of 75 mV at 10 mA cm-2 , a breakthrough of 500 mA cm-2 high current density, and water splitting stability of 500 hours in acid, making it one of the best-performing acid-stable OER non-noble metal materials. The optimized catalyst with interatomic Co-Co distance (ca. 2.80 Å) followed oxo-oxo coupling mechanism that involved obvious oxygen bridges on dinuclear Co sites (1,090 cm-1 ), confirmed by in situ SR-FTIR, XAFS and theoretical simulations. Furthermore, a major breakthrough of 120,000 mA g-1 high mass current density using the first reported noble metal-free cobalt anode catalyst of Co-Co DASs/ZCC in PEM-WE at 2.14 V was recorded.

4.
J Am Chem Soc ; 144(43): 19813-19824, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36265086

RESUMEN

Two-dimensional (2D) covalent organic frameworks (COFs) are composed of structurally precise, permanently porous, layered macromolecular sheets, which are traditionally synthesized as polycrystalline solids with crystalline domain lengths smaller than 100 nm. Here, we polymerize imine-linked 2D COFs as suspensions of faceted single crystals in as little as 5 min at moderate temperature and ambient pressure. Single crystals of two imine-linked 2D COFs were prepared, consisting of a rhombic 2D COF (TAPPy-PDA) and a hexagonal 2D COF (TAPB-DMPDA). The sizes of TAPPy-PDA and TAPB-DMPDA crystals were tuned from 720 nm to 4 µm and 450 nm to 20 µm in width, respectively. High-resolution transmission electron microscopy revealed that the COF crystals consist of layered, 2D polymers comprising single-crystalline domains. Continuous rotation electron diffraction resolved the unit cell and crystal structure of both COFs, which are single-crystalline in the a-b plane but disordered in the stacking c dimension. Single crystals of both COFs were incorporated into gas chromatography separation columns and exhibited unusual selective retention of cyclohexane over benzene, with single-crystalline TAPPy-PDA significantly outperforming single-crystalline TAPB-DMPDA. Polycrystalline TAPPy-PDA exhibited no separation, while polycrystalline TAPB-DMPDA exhibited poor separation and the opposite order of elution, retaining benzene more than cyclohexane, indicating the importance of improved material quality for COFs to exhibit properties that derive from their precise, crystalline structures. This work represents the first example of synthesizing imine-linked 2D COF single crystals at ambient pressure and short reaction times and demonstrates the promise of high-quality COFs for molecular separations.

5.
Adv Mater ; 36(15): e2302642, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37434271

RESUMEN

The development of facile methods for constructing highly active, cost-effective catalysts that meet ampere-level current density and durability requirements for an oxygen evolution reaction is crucial. Herein, a general topochemical transformation strategy is posited: M-Co9S8 single-atom catalysts (SACs) are directly converted into M-CoOOH-TT (M = W, Mo, Mn, V) pair-sites catalysts under the role of incorporating of atomically dispersed high-valence metals modulators through potential cycling. Furthermore, in situ X-ray absorption fine structure spectroscopy is used to track the dynamic topochemical transformation process at the atomic level. The W-Co9S8 breaks through the low overpotential of 160 mV at 10 mA cm-2. A series of pair-site catalysts exhibit a large current density of approaching 1760 mA cm-2 at 1.68 V vs reversible hydrogen electrode (RHE) in alkaline water oxidation and achieve a ≈240-fold enhancement in the normalized intrinsic activity compare to that reported CoOOH, and sustainable stability of 1000 h. Moreover, the O─O bond formation is confirmed via a two-site mechanism, supported by in situ synchrotron radiation infrared and density functional theory (DFT) simulations, which breaks the limit of adsorption-energy scaling relationship on conventional single-site.

6.
Dalton Trans ; 52(13): 3971-3980, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36880672

RESUMEN

We describe the synthesis, crystal structure and semiconducting properties of a number of hexacyanidometallates with the formula A2[MFe(CN)6]·xH2O (A = Na, K; M = Mg, Ca, Sr and Ba). All crystal structures were studied via single-crystal or powder X-ray diffraction. The unexpectedly low-symmetric structures in these ferrocyanides are described and contrasted with analogous transition-metal compounds which have been reported to be strictly or nearly cubic. The amount of crystal water in the structure for powder samples was determined by the thermogravimetric analysis (TGA), supported by IR and Raman spectroscopy. Electronic-structure calculations of K2[MgFe(CN)6] and K2[CaFe(CN)6] are compared with experimental UV-Vis measurements. The large band gaps by advanced theory indicate that the smaller experimental band gaps are due to surface effects of impurity states. Mott-Schottky curves of K2[MgFe(CN)6], K2[CaFe(CN)6] and K2[BaFe(CN)6]·3H2O exhibit positive slopes, which characterizes these compounds as n-type semiconductors.

7.
ACS Appl Mater Interfaces ; 13(21): 25461-25471, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34019374

RESUMEN

The constructure of a heterostructured interface is an effective way to design highly durable and efficient water oxidation electrocatalysts. Herein, Cu/CuCN with heterointerfaces is the first synthesized case through a simple epitaxial-like growth method, displaying superior activity and stability under pH-universal media. Associated with high electron transport and transfer of the epitaxial interfacial area, the Cu/CuCN pre-catalyst is applied to deliver the oxygen evolution reaction (OER) with lower overpotentials of 250 mV (forward scan) and 380 mV (backward scan) at 10 mA cm-2 and demonstrates better intrinsic activity (jECSA of 1.0 mA cm-2 at 420 mV) and impressive stability (136 h) in 1.0 M KOH, which exceeds most previous catalysts. Even using a nominal voltage of 1.5 V of a AA battery can drive the overall water-splitting setup. Experiments combined with theoretical simulations further uncover the existence of CuO species at the heterointerface during basic OER, which is evidence of better OER performance with abundant active sites that accelerate the conversion kinetics.

8.
Pest Manag Sci ; 76(12): 4248-4257, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32633047

RESUMEN

BACKGROUND: Soybean pod borer (Leguminivora glycinivorella) is an important soybean pest in north-eastern Asia, whose mature larvae overwinter in a diapause state. Disruption of winter diapause may be a valuable tool in pest management. However, the molecular mechanisms regulating diapause in this species have not yet been elucidated. RESULTS: We compared the transcriptomes and proteomes between diapause and mature larvae and between mature and newly developed pupae to identify the genes and proteins associated with diapause. Thirty-seven differentially expressed genes and their proteins changed synchronously between diapause and mature larvae and 82 changed synchronously between diapause larvae and newly developed pupae. Among these, genes involved in fatty acid biosynthesis and the longevity regulating pathway were up-regulated in diapause larvae and down-regulated in newly developed pupae, suggesting that they may regulate diapause. One fatty acid synthase (FAS) gene and two small heat shock genes (HSP19.8 and HSP18.9) were chosen for further functional analysis. After RNA interference (RNAi)-mediated knockdown of FAS, the survival of mature larvae was significantly lower than that of control larvae, but the mean developmental time from first-instar larva to adult remained unchanged. RNAi-mediated knockdown of HSP19.8 and HSP18.9 severely shortened the mean developmental time, causing approximately 50% larvae to develop directly into pupae. CONCLUSION: FAS and the small heat shock gene play roles in diapause regulation and larvae survival. This study provides important information that may assist in understanding the molecular regulatory mechanisms of overwintering diapause of this important agricultural insect pest. © 2020 Society of Chemical Industry.


Asunto(s)
Diapausa , Glycine max , Animales , Asia Oriental , Larva/genética , Proteómica , Glycine max/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA