Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Divers ; 27(3): 1023-1035, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35739374

RESUMEN

This study constructed a new aqueous solubility dataset and a solubility regression model which was ensembled by GCN and machine learning models. Aqueous solubility is a key physiochemical property of small molecules in drug discovery. In the past few decades, there have been many studies about solubility prediction. However, many of these studies have high root mean squared error (RMSE). Meanwhile, their dataset always contains salt compounds and solubility data obtained from different experimental conditions. In this paper, we constructed a clean dataset with 2609 compounds, which was small but contains only solubility records without salts at the same temperatures (25 °C). Here, we applied graph convolutional neural network (GCN) to construct an aqueous solubility prediction model. To enhance the performance of the model, the molecular MACCS key fingerprints and physiochemical descriptors were also combined with the GCN model to build a multi-channel model. Additionally, the authors also built two machine learning models (support vector regression and gradient boost decision tree) and assembled them to the GCN model to improve the root mean squared error (RMSE = 0.665). Finally, comparative experiments have shown that our framework achieved the best performance on ESOL dataset (RMSEval = 0.56, RMSEtest = 0.44) and surpassed four established software on aqueous solubility prediction of new compounds.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Solubilidad , Agua/química , Programas Informáticos
2.
J Chem Inf Model ; 62(7): 1654-1668, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35353505

RESUMEN

Reaction-based de novo design is the computational generation of novel molecular structures by linking building blocks using reaction vectors derived from chemistry knowledge. In this work, we first adopted a recurrent neural network (RNN) model to generate three groups of building blocks with different functional groups and then constructed an in silico target-focused combinatorial library based on chemical reaction rules. Mer tyrosine kinase (MERTK) was used as a study case. Combined with a scaffold enrichment analysis, 15 novel MERTK inhibitors covering four scaffolds were achieved. Among them, compound 5a obtained an IC50 value of 53.4 nM against MERTK without any further optimization. The efficiency of hit identification could be significantly improved by shrinking the compound library with the fragment iterative optimization strategy and enriching the dominant scaffold in the hinge region. We hope that this strategy can provide new insights for accelerating the drug discovery process.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Estructura Molecular , Redes Neurales de la Computación , Tirosina Quinasa c-Mer
3.
Phys Chem Chem Phys ; 24(17): 9904-9920, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35416820

RESUMEN

Accurate prediction of binding affinity is a primary objective in structure-based drug discovery. A free energy perturbation (FEP) method based on molecular dynamics simulation shows great promise for protein-ligand binding affinity predictions. However, accurate calculation of binding affinity for allosteric inhibitors remains unknown and elusive, which hampers the discovery of allosteric inhibitors. Allosteric inhibitors exhibit several significant advantages over orthosteric inhibitors including higher specificity and lower side effects. Allosteric inhibitors against SHP2 are thought to be beneficial not only for diseases related to metabolism, but also for cancer, which make SHP2 a potential drug target. However, high structural sensitivity makes structural optimization of SHP2 allosteric inhibitors face challenges. Herein, we calculated the absolute binding free energy of SHP2 allosteric inhibitors using the FEP method by employing different λ-windows/simulation time sampling strategies. A simulation run with 32 λ-windows/64 ps sampling strategy delivered an excellent correlation (r = 0.96) and an unprecedented low mean absolute error of 0.5 kcal mol-1 between predicted binding free energies and experimental ones, outperforming the MM/PBSA method. Our study demonstrates the possibility to accurately calculate the absolute binding free energy of allosteric inhibitors using FEP, which offers exciting prospects for the discovery of more effective allosteric inhibitors.


Asunto(s)
Simulación de Dinámica Molecular , Entropía , Ligandos , Unión Proteica , Termodinámica
4.
J Chem Inf Model ; 60(10): 4640-4652, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32926776

RESUMEN

Kinase inhibitors are widely used in antitumor research, but there are still many problems such as drug resistance and off-target toxicity. A more suitable solution is to design a multitarget inhibitor with certain selectivity. Herein, computational and experimental studies were applied to the discovery of dual inhibitors against FGFR4 and EGFR. A quantitative structure-property relationship (QSPR) study was carried out to predict the FGFR4 and EGFR activity of a data set consisting of 843 and 5088 compounds, respectively. Four different machine learning methods including support vector machine (SVM), random forest (RF), gradient boost regression tree (GBRT), and XGBoost (XGB) were built using the most suitable features selected by the mutual information algorithm. As for FGFR4 and EGFR, SVM showed the best performance with R2test-FGFR4 = 0.80 and R2test-EGFR = 0.75, demonstrating excellent model stability, which was used to predict the activity of some compounds from an in-house database. Finally, compound 1 was selected, which exhibits inhibitory activity against FGFR4 (IC50 = 86.2 nM) and EGFR (IC50 = 83.9 nM) kinase, respectively. Furthermore, molecular docking and molecular dynamics simulations were performed to identify key amino acids for the interaction of compound 1 with FGFR4 and EGFR. In this paper, the machine-learning-based QSAR models were established and effectively applied to the discovery of dual-target inhibitors against FGFR4 and EGFR, demonstrating the great potential of machine learning strategies in dual inhibitor discovery.


Asunto(s)
Aprendizaje Automático , Relación Estructura-Actividad Cuantitativa , Receptores ErbB , Simulación del Acoplamiento Molecular , Máquina de Vectores de Soporte
5.
Eur J Med Chem ; 234: 114239, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35290843

RESUMEN

Compared with traditional de novo drug discovery, drug repurposing has become an attractive drug discovery strategy due to its low-cost and high efficiency. Through a comprehensive analysis of the candidates that have been identified with drug repositioning potentials, it is found that although some drugs do not show obvious advantages in the original indications, they may exert more obvious effects in other diseases. In addition, some drugs have a synergistic effect to exert better clinical efficacy if used in combination. Particularly, it has been confirmed that drug repositioning has benefits and values on the current public health emergency such as the COVID-19 pandemic, which proved the great potential of drug repositioning. In this review, we systematically reviewed a series of representative drugs that have been repositioned for different diseases and illustrated successful cases in each disease. Especially, the mechanism of action for the representative drugs in new indications were explicitly explored for each disease, we hope this review can provide important insights for follow-up research.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , Descubrimiento de Drogas , Humanos , Pandemias
6.
ACS Comb Sci ; 22(12): 873-886, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33146518

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease, which is compared to "immortal cancer" in industry. Currently, SYK, BTK, and JAK are the three major targets of protein tyrosine kinase for this disease. According to existing research, marketed and research drugs for RA are mostly based on single target, which limits their efficacy. Therefore, designing multitarget or dual-target inhibitors provide new insights for the treatment of RA regarding of the specific association between SYK, BTK, and JAK from two signal transduction pathways. In this study, machine learning (XGBoost, SVM) and deep learning (DNN) models were combined for the first time to build a powerful integrated model for SYK, BTK, and JAK. The predictive power of the integrated model was proved to be superior to that of a single classifier. In order to accurately assess the generalization ability of the integrated model, comprehensive similarity analysis was performed on the training and the test set, and the prediction accuracy of the integrated model was specifically analyzed under different similarity thresholds. External validation was conducted using single-target and dual-target inhibitors, respectively. Results showed that our model not only obtained a high recall rate (97%) in single-target prediction, but also achieved a favorable yield (54.4%) in dual-target prediction. Furthermore, by clustering dual-target inhibitors, the prediction performance of model in various classes were proved, evaluating the applicability domain of the model in the dual-target drug screening. In summary, the integrated model proposed is promising to screen dual-target inhibitors of SYK/JAK or BTK/JAK as RA drugs, which is beneficial for the clinical treatment of rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Inteligencia Artificial , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Humanos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA