RESUMEN
Selective recognition of 1,3-butadiene from complex olefin isomers is vital for 1,3-butadiene purification, but the lack of porous materials with suitable pore structures results in poor selectivity and low capacity in C4 olefin separation. Herein, two sulfonate-functionalized organic frameworks, ZU-601 and ZU-602, are designed and show impressive separation performance toward C4 olefins. Benefiting from the suitable aperture size caused by the flexibility of coordinated organic ligand, ZU-601, ZU-602 that are pillared with different sulfonate anions could discriminate C4 olefin isomers with high uptake ratio: 1,3-butadiene/1-butene (207), 1,3-butadiene/trans-2-butene (10.1). Meanwhile, their layer-stacked structure enables the utilization of both intra- and interlayer space, enhancing the accommodation of guest molecules. ZU-601 exhibits record high 1,3-butadiene adsorption capacity of 2.90 mmol g-1 (0.5 bar, 298 K) among the reported flexible porous materials with high 1,3-butadiene/1-butene selectivity. The breakthrough experiments confirm their superior separation ability even for all five C4 olefin isomers, and the molecular-level structural change is well elucidated via powder, crystal analysis, and simulation studies. The work provides ideas toward advanced materials design with simultaneous high separation capacity and high separation selectivity for challenging separations.
RESUMEN
Porous ionic polymers with unique features have exhibited high performance in various applications. However, the fabrication of functional porous ionic polymers with custom functionality and porosity for efficient removal of low-concentration SO2 remains challenging. Herein, a novel nitrogen-enriched porous ionic polymer NH2Py-PIP is prepared featuring high-content nitrogen sites (15.9 wt.%), adequate ionic sites (1.22 mmol g-1), and a hierarchical porous structure. The proposed construction pathway relies on a tailored nitrogen-functionalized cross-linker NH2Py, which effectively introduces abundant functional sites and improves the porosity of porous ionic polymers. NH2Py-PIP with a well-engineered SO2-affinity environment achieves excellent SO2/CO2 selectivity (1165) and high SO2 adsorption capacity (1.13 mmol g-1 at 0.002 bar), as well as enables highly efficient and reversible dynamic separation performance. Modeling studies further elucidate that the nitrogen sites and bromide anions collaboratively promote preferential adsorption of SO2. The unique design in this work provides new insights into constructing functional porous ionic polymers for high-efficiency separations.
RESUMEN
Porous materials that could recognize specific molecules from complex mixtures are of great potential in improving the current energy-intensive multistep separation processes. However, due to the highly similar structures and properties of the mixtures, the design of desired porous materials remains challenging. Herein, a sulfonate-functionalized metal-organic framework ZU-609 with suitable pore size and pore chemistry is designed for 1,3-butadiene (C4H6) purification from complex C4 mixtures. The sulfonate anions decorated in the channel achieve selective recognition of C4H6 from other C4 olefins with subtle polarity differences through C-Hâ â â O-S interactions, affording recorded C4H6/trans-2-C4H8 selectivity (4.4). Meanwhile, the shrunken mouth of the channel with a suitable pore size (4.6â Å) exhibits exclusion effect to the larger molecules cis-2-C4H8, iso-C4H8, n-C4H10 and iso-C4H10. Benefiting from the moderate C4 olefins binding affinity exhibited by sulfonate anions, the adsorbed C4H6 could be easily regenerated near ambient conditions. Polymer-grade 1,3-butadiene (99.5 %) is firstly obtained from 7-component C4 mixtures via one adsorption-desorption cycle. The work demonstrates the great potential of synergistic recognition of size-sieving and thermodynamically equilibrium in dealing with complex mixtures.
RESUMEN
Adsorbents-based gas separation technologies are regarded as the potential energy-efficient alternatives towards current thermal-driven methods, and the study on multi-component gas separation is essential to deepen our understanding of the adsorbents for practical use. Relative to the ideal two-component mixtures, both the adsorption behavior and separation mechanisms are obviously more complex in multiple gas mixtures due to their close or even overlapped sizes and properties. The emergence of metal-organic frameworks with controllable pore size and pore chemistry provides the platform for the tailor-made pore structure to satisfy the harsh requirements of multi-component gas separation. This minireview highlights the recent advance of multi-component gas separation using metal-organic frameworks, including multiple impurities removal and selective molecular capture. Combining with the typical cases of hydrocarbon separations (C2, C4, and C8), the detailed discussion about the developed strategies (e.g. self-adaptive binding sites, multiple binding spaces, synergistic binding sites, synergistic sorbent separation technology, gate-opening effect, size and thermodynamic combine effect) that are adaptive to different scenarios would be provided. The review will conclude with our perspective on the existing barriers and the future direction of this topic.
RESUMEN
Xylene separation is crucial but challenging, especially for the preferential separation of the intermediate-size m-xylene from xylene mixtures. Herein, exploiting the differences in molecular length and alkyl distribution among xylenes, we present a length-matched metal-organic framework, formulated as Al(OH)[O2C-C4H2O-CO2], featuring an effective pore size corresponding to m-xylene molecular length combined with multiple negative O hydrogen bond donors distribution, can serve as a molecular trap for efficient preferential separation of the intermediate-size m-xylene. Benchmark separation performance was achieved for separating m-xylene from a ternary mixture of m-xylene/o-xylene/p-xylene, with simultaneous record-high m-xylene uptake (1.3â mmol g-1) and m-xylene/p-xylene selectivity (5.3) in the liquid-phase competitive adsorption. Both vapor- and liquid-phase fixed-bed tests confirmed its practical separation capability with benchmark dynamic m-xylene/p-xylene and m-xylene/o-xylene selectivities, as well as excellent regenerability. The selective and strong m-xylene binding affinity among xylene molecules was further elucidated by simulations, validating the effectiveness of such a pore environment for the separation of intermediate-size molecules.
RESUMEN
Adsorptive separation is an energy-efficient alternative, but its advancement has been hindered by the challenge of industrially potential adsorbents development. Herein, a novel ultra-microporous metal-organic framework ZU-901 is designed that satisfies the basic criteria raised by ethylene/ethane (C2 H4 /C2 H6 ) pressure swing adsorption (PSA). ZU-901 exhibits an "S" shaped C2 H4 curve with high sorbent selection parameter (65) and could be mildly regenerated. Through green aqueous-phase synthesis, ZU-901 is easily scalable with 99 % yield, and it is stable in water, acid, basic solutions and cycling breakthrough experiments. Polymer-grade C2 H4 (99.51 %) could be obtained via a simulating two-bed PSA process, and the corresponding energy consumption is only 1/10 of that of simulating cryogenic distillation. Our work has demonstrated the great potential of pore engineering in designing porous materials with desired adsorption and desorption behavior to implement an efficient PSA process.
RESUMEN
The engineering and tailoring of porous materials to realize the precise discrimination of CO2 and C2 H2 , with almost identical kinetic diameters, is a challenging task. We herein report the first example of the kinetic-sieving of relatively larger molecule of C2 H2 from CO2 by a novel sulfonic anion-pillared hybrid ultramicroporous materials of ZU-610a. Specifically, ZU-610 constructed from copper(II), isonicotinic acid and 1,2-ethanedisulfonic acid is synthesized and shows the preferential affinity for C2 H2 over CO2 . After the post-synthetic heat treatment of ZU-610, ZU-610a with a contracted aperture is obtained. Interestingly, the C2 H2 -selctive ZU-610 was reversed to the CO2 -selective ZU-610a. High purity C2 H2 (>99.5 %) could be directly obtained from the dynamic breakthrough experiments on an equimolar C2 H2 /CO2 mixture at 298â K. This study provides guidance for the design of adsorbents aimed at separation systems with similar kinetic diameter.
RESUMEN
Propyne/propylene (C3 H4 /C3 H6 ) separation is an important but challenging industrial process to produce polymer-grade C3 H6 and recover high-purity C3 H4 . Herein, we report an ultrastable TiF6 2- anion cross-linked metal-organic framework (ZNU-2) with precisely controlled pore size, shape and functionality for benchmark C3 H4 storage (3.9/7.7â mmol g-1 at 0.01/1.0â bar and 298â K) and record high C3 H4 /C3 H6 (10/90) separation potential (31.0â mol kg-1 ). The remarkable C3 H4 /C3 H6 (1/99, 10/90, 50/50) separation performance was fully demonstrated by simulated and experimental breakthroughs under various conditions with excellent recyclability and high productivity (42â mol kg-1 ) of polymer-grade C3 H6 from a 1/99â C3 H4 /C3 H6 mixture. A modelling study revealed that the symmetrical spatial distribution of six TiF6 2- on the icosahedral cage surface provides two distinct binding sites for C3 H4 adsorption: one serves as a tailored single C3 H4 molecule trap and the other boosts C3 H4 accommodation by cooperative host-guest and guest-guest interactions.
RESUMEN
Hydrocarbon separation is one of the most critically important and complex industrial separation processes, offering versatile bulk chemicals and vital support to the national economy. Traditional separation technologies, such as cryogenic distillation and solvent extraction, are energy-intensive and cause serious environmental stress. Moreover, the growth of industries and technologies and the greater requirements for products (e.g., purity) lead to challenges that cannot be met using traditional separation methods. Adsorptive and membrane-based separations are recognized as energy-efficient alternatives by which to revolutionize the current energy-intensive conditions and satisfy the new demands. This critical review presents the recent progress in metal-organic frameworks (MOFs) and related membranes (e.g., continuous MOF membranes and mixed-matrix membranes) for hydrocarbon separation. The contributions of the underlying separation mechanisms (e.g., enthalpy-driven thermodynamic equilibrium, molecular sieving, kinetic separation based on molecular size, and combined mechanisms) and the adopted strategies (e.g., defect and microstructure control, membrane thickness and interfacial compatibility) to the breaking of trade-off (e.g., permeability/selectivity and capacity/selectivity) and the design of novel materials and processing technologies are discussed. Moreover, this review also summarizes the potential barriers that exist from the academic to the ultimate industrial implementations and the prospects of future development.
RESUMEN
Here we demonstrate the deep removal of SO2 with high uptake capacity (1.55â mmol g-1 ) and record SO2 /CO2 selectivity (>5000) at ultra-low pressure of 0.002â bar, using ionic ultramicroporous polymers (IUPs) with high density of basic anions. The successful construction of uniform ultramicropores via polymerizing ionic monomers into IUPs enables the fully exploitation of the selective anionic sites. Notably, the aperture size and surface chemistry of IUPs can be finely tuned by adjusting the branched structure of ionic monomers, which play critical roles in excluding CH4 and N2 , as well as reducing the coadsorption of CO2 . The swelling property of IUPs with adsorption of SO2 contributed to the high SO2 uptake capacity and high separation selectivity. Systematic investigations including static gas adsorption, dynamic breakthrough experiments, stability tests and modeling studies confirmed the efficient performance of IUPs for trace SO2 capture.
RESUMEN
The separation of C2 H2 /CO2 is an important process in industry but challenged by the trade-off of capacity and selectivity owning to their similar physical properties and identical kinetic molecular size. We report the first example of symmetrically interpenetrated dodecaborate pillared MOF, ZNU-1, for benchmark selective separation of C2 H2 from CO2 with a high C2 H2 capacity of 76.3â cm3 g-1 and record C2 H2 /CO2 selectivity of 56.6 (298â K, 1â bar) among all the robust porous materials without open metal sites. Single crystal structure analysis and modeling indicated that the interpenetration shifting from asymmetric to symmetric mode provided optimal pore chemistry with ideal synergistic "2+2" dihydrogen bonding sites for tight C2 H2 trapping. The exceptional separation performance was further evidenced by simulated and experimental breakthroughs with excellent recyclability and high productivity (2.4â mol kg-1 ) of 99.5 % purity C2 H2 during stepped desorption process.
RESUMEN
Separation of acetylene from carbon dioxide remains a daunting challenge because of their very similar molecular sizes and physical properties. We herein report the first example of using copper(I)-alkynyl chemistry within an ultra-microporous MOF (CuI @UiO-66-(COOH)2 ) to achieve ultrahigh C2 H2 /CO2 separation selectivity. The anchored CuI ions on the pore surfaces can specifically and strongly interact with C2 H2 molecule through copper(I)-alkynyl π-complexation and thus rapidly adsorb large amount of C2 H2 at low-pressure region, while effectively reduce CO2 uptake due to the small pore sizes. This material thus exhibits the record high C2 H2 /CO2 selectivity of 185 at ambient conditions, significantly higher than the previous benchmark ZJU-74a (36.5) and ATC-Cu (53.6). Theoretical calculations reveal that the unique π-complexation between CuI and C2 H2 mainly contributes to the ultra-strong C2 H2 binding affinity and record selectivity. The exceptional separation performance was evidenced by breakthrough experiments for C2 H2 /CO2 gas mixtures. This work suggests a new perspective to functionalizing MOFs with copper(I)-alkynyl chemistry for highly selective separation of C2 H2 over CO2 .
RESUMEN
Porous materials with open metal sites have been investigated to separate various gas mixtures. However, open metal sites show the limitation in the separation of some challenging gas mixtures, such as C2 H2 /CO2 . Herein, we propose a new type of ultra-strong C2 H2 nano-trap based on multiple binding interactions to efficiently capture C2 H2 molecules and separate C2 H2 /CO2 mixture. The ultra-strong acetylene nano-trap shows a benchmark Qst of 79.1â kJ mol-1 for C2 H2 , a record high pure C2 H2 uptake of 2.54â mmol g-1 at 1×10-2 â bar, and the highest C2 H2 /CO2 selectivity (53.6), making it as a new benchmark material for the capture of C2 H2 and the separation of C2 H2 /CO2 . The locations of C2 H2 molecules within the MOF-based nanotrap have been visualized by the in situ single-crystal X-ray diffraction studies, which also identify the multiple binding sites accountable for the strong interactions with C2 H2 .
RESUMEN
Isoreticular principle has been employed to realize a flexible-robust metal-organic framework (MOF) with extended pore structure for the adsorptive removal of trace acetylene from ethylene under ambient conditions. The substitution from zinc(II) to copper(II) of high coordination distortion leads to elongated Cu-F bonds that expand the closed pore cavities in the prototypical MOF from 3.5 × 3.9 × 4.1 to 3.6 × 4.3 × 4.2 Å3. The optimal cavity size together with strong binding sites thus endows the new Cu analogue to possess open pore space accessible for trace C2H2 within a substantial low-pressure range while excluding C2H4 molecules, as validated by gas isotherms and single-crystal structure of its partially C2H2-loading phase. In contrast to the Zn prototype, at 298 K and 1.0 bar, the guest-free Cu analogue shows significant C2H2 uptake increase with a total capacity of 4.57 mmol g-1, and gains an over two orders of magnitude jump in IAST selectivity for C2H2/C2H4 (1/99, v/v). These results are higher than the benchmark MOFs for molecular sieving of C2H2/C2H4, leading a high C2H4 productivity of 14.9 mmol g-1. Crystallography studies, molecular modeling, selectivity evaluation, and breakthrough experiments have comprehensively demonstrated this flexible-robust MOF as an efficient adsorbent for C2H2/C2H4 separation.
RESUMEN
Removing trace amounts of alkynes from alkenes is one of the most critical and challenging steps to produce high-purity alkenes, the fundamental raw materials in petrochemical industry. Selective hydrogenation using noble metal catalysts under harsh conditions can convert trace alkynes to alkenes, but suffers from limited selectivity, over-hydrogenation, and energy-intensive consumption. Herein, the simultaneously adsorptive removal of trace propyne (C3 H4 ) and acetylene (C2 H2 ) from quaternary C2 H2 /C2 H4 /C3 H4 /C3 H6 mixture is reported for the first time using an anion-pillared hybrid ultramicroporous material ZU-16-Co (or TIFSIX-3-Co) by finely tuning the pore dimensions and introducing different binding sites to match the shape of alkynes. ZU-16-Co with contracted aperture size and judiciously extended cell dimension simultaneously exhibits superior trapping capacity for propyne under low concentration (2.45 mmol g-1 at 5000 ppm) and surprisingly high C2 H2 uptake (4.18 and 1.4 mmol g-1 at 1.0 and 0.01 bar, respectively) through synergistic host-guest and guest-guest interactions. Importantly, the ability of ZU-16-Co to capture trace alkynes (C2 H2 and C3 H4 ) in one step is confirmed by breakthrough experiments for quaternary C3 H4 /C2 H2 /C3 H6 /C2 H4 mixtures, presenting ZU-16-Co as a promising material for alkyne trapping.
RESUMEN
A series of cyclodextrin-derived room temperature macromolecular ionic liquids carrying rather low glass transition temperatures of -20 to -40 °C are synthesized via sequential esterification, quaternization, and anion metathesis reactions. In addition to being ionic in nature, they are viscous liquids at room temperature with more fluidic behavior at elevated temperatures. They serve as a solvent for organic dyes or iodine separation via a liquid-liquid extraction approach. This strategy is useful for the development of various sugar (macro)molecule-based functional ionic liquids as well as macromolecular ionic liquids.
Asunto(s)
Líquidos Iónicos/síntesis química , Polietilenglicoles/química , Temperatura , beta-Ciclodextrinas/química , Aniones/química , Líquidos Iónicos/química , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Estructura Molecular , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
Separation of acetylene (C2 H2 ) from carbon dioxide (CO2 ) or ethylene (C2 H4 ) is important in industry but limited by the low capacity and selectivity owing to their similar molecular sizes and physical properties. Herein, we report two novel dodecaborate-hybrid metal-organic frameworks, MB12 H12 (dpb)2 (termed as BSF-3 and BSF-3-Co for M=Cu and Co), for highly selective capture of C2 H2 . The high C2 H2 capacity and remarkable C2 H2 /CO2 selectivity resulted from the unique anionic boron cluster functionality as well as the suitable pore size with cooperative proton-hydride dihydrogen bonding sites (B-Hδ- â â â Hδ+ -C≡C-Hδ+ â â â Hδ- -B). This new type of C2 H2 -specific functional sites represents a fresh paradigm distinct from those in previous leading materials based on open metal sites, strong electrostatics, or hydrogen bonding.
RESUMEN
The separation of xenon/krypton (Xe/Kr) mixture is of great importance to industry, but the available porous materials allow the adsorption of both, Xe and Kr only with limited selectivity. Herein we report an anion-pillared ultramicroporous material NbOFFIVE-2-Cu-i (ZU-62) with finely tuned pore aperture size and structure flexibility, which for the first time enables an inverse size-sieving effect in separation along with record Xe/Kr selectivity and ultrahigh Xe capacity. Evidenced by single-crystal X-ray diffraction, the rotation of anions and pyridine rings upon contact of larger-size Xe atoms adapts cavities to the shape/size of Xe and allows strong host-Xe interaction, while the smaller-size Kr is excluded. Breakthrough experiments confirmed that ZU-62 has a real practical potential for producing high-purity Kr and Xe from air-separation byproducts, showing record Kr productivity (206â mL g-1 ) and Xe productivity (42â mL g-1 , in desorption) as well as good recyclability.
RESUMEN
As a new generation of porous materials, metal-organic frameworks (MOFs, also known as porous coordination polymers) have shown great promise for gas separation and purification because of their unique pore structures and surfaces for their differential recognition of small gas molecules. In this review article, we summarize our ongoing research endeavors to explore and discover microporous MOFs for gas separation and purification. We have developed several approaches to systematically tune the pores and to immobilize functional sites, including (1) the primitive cubic net of interpenetrated microporous MOFs from the self-assembly of the paddle-wheel clusters, M 2 ( C O 2 ) 4 ( M = C u 2 + , Z u 2 + ) ), with two types of organic dicarboxylic acid and pillar bidentate linkers; (2) microporous mixed-metal-organic frameworks (M0 MOFs) through the metallo-ligands, and (3) microporous MOFs with dual functionalities. Such efforts have enabled us to make some breakthroughs on microporous MOFs for gas separation and purification, as demonstrated in the gas chromatographic separation of hexane isomers, kinetic D2/H2 separation, acetylene/ethylene separation, carbon dioxide capture, C2H2/CO2 and C3H4/C3H6 separation. Our group is one of the first groups who have envisioned the practical promise of microporous MOFs for the industrial gas separation and examined their separation capacities and efficiency using the fixed-bed adsorption and/or breakthrough experiments. Some of the very important and representative examples of these microporous MOFs for diverse gas separation and purification are highlighted in this review.
RESUMEN
The ever-growing demand for advanced energy storage devices in portable electronics, electric vehicles and large scale power grids has triggered intensive research efforts over the past decade on lithium and sodium batteries. The key to improve their electrochemical performance and enhance the service safety lies in the development of advanced electrode, electrolyte, and auxiliary materials. Ionic liquids (ILs) are liquids consisting entirely of ions near room temperature, and are characterized by many unique properties such as ultralow volatility, high ionic conductivity, good thermal stability, low flammability, a wide electrochemical window, and tunable polarity and basicity/acidity. These properties create the possibilities of designing batteries with excellent safety, high energy/power density and long-term stability, and also provide better ways to synthesize known materials. IL-derived materials, such as poly(ionic liquids), ionogels and IL-tethered nanoparticles, retain most of the characteristics of ILs while being endowed with other favourable features, and thus they have received a great deal of attention as well. This review provides a comprehensive review of the various applications of ILs and derived materials in lithium and sodium batteries including Li/Na-ion, dual-ion, Li/Na-S and Li/Na-air (O2) batteries, with a particular emphasis on recent advances in the literature. Their unique characteristics enable them to serve as advanced resources, medium, or ingredient for almost all the components of batteries, including electrodes, liquid electrolytes, solid electrolytes, artificial solid-electrolyte interphases, and current collectors. Some thoughts on the emerging challenges and opportunities are also presented in this review for further development.