Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bull Environ Contam Toxicol ; 108(6): 1001-1005, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35486156

RESUMEN

In recent years, with the development of the global economy, water pollution has increased. Pollutants migrate, accumulate, and diffuse in aquatic environments. Most of the pollutants eventually enter aquatic organisms. The accumulation of pollutants affects the development and reproduction of organisms, and many pollutants have teratogenic, carcinogenic, and/or mutagenic effects. Aquatic organisms in estuaries and coastal areas are under pressure due to both salinity and pollutants. Among them, salinity, as an environmental factor, may affect the behavior of pollutants in the aquatic environment, causing changes in their toxic effects on fishes. Salinity also directly affects the growth and development of fishes. Therefore, this paper focuses on metals and organic pollutants and discusses the toxic effects of pollutants on fish under different salinities. This research is of great significance to environmental protection and ecological risk assessment of aquatic environments.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Estuarios , Peces , Salinidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
2.
Chemosphere ; 313: 137381, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36435316

RESUMEN

This paper evaluates the coexistence risks of triphenyltin (TPT) and norfloxacin (NOR) to aquatic organisms in the aquatic environment. Carp (Cyprinus carpio) was used as the test organism, the control and exposure groups (1 µg/L TPT), 1 mg/L (NOR), 1 µg/LTPT+1 mg/LNOR (TPT_NOR)) were set up according to the environmental concentration in the severely polluted area for 42 days. The single/combined toxic effects of TPT and NOR on aquatic organisms were evaluated by analyzing carp brain transcriptome sequencing, gut microbiota structure, and detection of biochemical indicators and RT-qPCR. Our results show that TPT and NOR induce lipid metabolism disorder in carp brain tissue, affecting the metabolism of cytochrome P450 to exogenous substances, and NOR also induces immunosuppression in carp. Long-term exposure to TPT combined with NOR amplifies the monotoxicity of TPT or NOR on lipid metabolism and immunosuppression in carp, induces immune dysfunction in brain tissue and changes in gut microbiota structure. However, TPT_NOR has no obvious neurotoxicity on the brain, but it can inhibit the level of intestinal MDA. This highlights that co-exposure of TPT and NOR amplifies metabolic disorders and immunosuppressive functions in carp.


Asunto(s)
Carpas , Compuestos Orgánicos de Estaño , Contaminantes Químicos del Agua , Animales , Norfloxacino/toxicidad , Compuestos Orgánicos de Estaño/toxicidad , Intestinos , Contaminantes Químicos del Agua/toxicidad
3.
Environ Sci Ecotechnol ; 16: 100266, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37096249

RESUMEN

Microplastics (MPs), an emerging group of pollutants, not only have direct toxic effects on aquatic organisms but also cause combined toxicity by absorbing other pollutants. Triphenyltin (TPT), one of the most widely used organotin compounds, has adverse effects on aquatic organisms. However, little is known about the combined toxicity of MPs and TPT to aquatic organisms. To investigate the individual and combined toxicity of MPs and TPT, we selected the common carp (Cyprinus carpio) for a 42-day exposure experiment. Based on the environmental concentrations in a heavily polluted area, the experimental concentrations of MPs and TPT were set at 0.5 mg L-1 and 1 µg L-1, respectively. The effects of MPs combined with TPT on the carp gut-brain axis were evaluated by detecting gut physiology and biochemical parameters, gut microbial 16S rRNA, and brain transcriptome sequencing. Our results suggest that a single TPT caused lipid metabolism disorder and a single MP induced immunosuppression in carp. When MPs were combined with TPT, the involvement of TPT amplified the immunotoxic effect induced by MPs. In this study, we also explored the gut-brain axis relationship of carp immunosuppression, providing new insights for assessing the combined toxicity of MPs and TPT. At the same time, our study provides a theoretical basis for evaluating the coexistence risk of MPs and TPT in the aquatic environment.

4.
Environ Sci Pollut Res Int ; 29(29): 44513-44522, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35133590

RESUMEN

Currently, there is a relatively lack of relevant research on the interference effect of quinolone antibiotics on the endocrine of aquatic animals. In this study, the toxicity of norfloxacin (NOR) on the endocrine system of juvenile common carp (Cyprinus carpio) was evaluated, as well as the hematocyte parameters. Specifically, two important endocrine axes were assessed: the hypothalamus-pituitary-thyroid (HPT) axis and hypothalamus-pituitary-gonadal (HPG) axis. Norfloxacin was used as a representative of quinolone antibiotics. According to the concentration of water pollution areas and considering the bad situation that may be caused by wastewater discharge, a control, 100 ng/L NOR, and 1 mg/L NOR treatment groups were set up. The juvenile carp, as the test animal, was subjected to an exposure experiment for 42 days. Thyroid hormones (T3 and T4) and related genes in HPT axis and sex hormones (11-ketotestosterone [11-KT] and progesterone [PROG]) and related genes in HPG axis and blood count are tested. It was found that the T4 iodine level and conversion process were enhanced after NOR treatment, which in turn led to the increase of T3 content and biological activity in the blood. One hundred nanograms per liter NOR can inhibit the level of sex hormones and inhibit the expression of HPG axis-related genes. In the 1 mg/L NOR treatment group, long-term exposure over a certain concentration range may lead to the development of adaptive mechanisms, making the changes in hormones and related genes insignificant. In conclusion, this study provides reference data for the endocrine interference of quinolone antibiotics on aquatic organisms, and has ecological significance for assessing the health of fish populations of quinolone antibiotics. However, the specific sites and mechanisms of action related to the effects of NOR on the endocrine system remain unclear and require further study.


Asunto(s)
Carpas , Animales , Antibacterianos/farmacología , Sistema Endocrino , Hormonas Esteroides Gonadales/metabolismo , Norfloxacino/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-35489638

RESUMEN

This study aimed to determine the effects of Enrofloxacin (ENR) exposure and depuration on the disruption of thyroid function and growth of juvenile grass carp (Ctenopharyngodon idella) as well as to assess the risk of ENR exposure to human health. Juvenile grass carp were treated with ENR solutions at different concentration gradients for 21 days and then depurated for 14 days. The results indicated ENR accumulation in the juvenile grass carp muscles, which persisted after depuration. In addition, exposure to ENR could alter growth by regulating the expression of genes associated with growth hormone/insulin-like growth factor (GH)/IGF) axis and the hypothalamic-pituitary-thyroid (HPT) axis. During ENR exposure, no significant changes in growth hormone levels were observed; however, a significant increase in the growth hormone level was noted. GH/IGF axis-related genes were upregulated after ENR exposure, and their expression levels remained high after depuration. Notably, a significant increase in the serum triiodothyronine (T3) and thyroxine (T4) levels coincided with the upregulation of HPT axis-related genes in both exposure and depuration treatments, and their expression levels remained high after depuration. Therefore, juvenile grass carp exposure to ENR induces physiological stress through HPT and GH/IGF axes that cannot be recovered after depuration. ENR accumulates in the muscles of juvenile grass carp and may pose a threat to human health. Therefore, exposure of juvenile grass carp to ENR results in impaired thyroid function and impaired growth. In addition, consumption of ENR-exposed fish poses human health risks.


Asunto(s)
Carpas , Animales , Carpas/metabolismo , Enrofloxacina/toxicidad , Proteínas de Peces/genética , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Tiroxina , Triyodotironina
6.
Environ Pollut ; 287: 117612, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34146995

RESUMEN

Antibiotics are emerging pollutants in our environment. These treatments have been widely used for their low cost, convenient use, and prominent effects. However, the prolonged or excessive use of such drugs can cause toxicity in aquatic organisms. These effects include genotoxicity, metabolic alteration, delayed development and decreased immunity, which carry further risks for ecological systems. In the present study, juvenile common carp (Cyprinus carpio) were exposed to norfloxacin (NOR) for 42 days, with NOR concentrations ranging from 100 ng/L to 1 mg/L, to assess the effects of environmental concentrations of antibiotics, to investigate the effects of NOR on intestinal morphology, enzymatic activity, and transcriptomic levels of RNA in fish, as well as a risk assessment on human health was carried out. The results demonstrated that oxidative stress was induced, the barrier function of the intestine was damaged, and changes occurred in the expression of immune-related genes in fish chronically exposed to antibiotics. Moreover, NOR could affect the regulation of the NF-κB signaling pathway. Thus, environmental concentrations of antibiotics can influence the intestinal health of fish and potentially posing health risks to humans.


Asunto(s)
Carpas , Contaminantes Químicos del Agua , Animales , Humanos , Intestinos , Norfloxacino/toxicidad , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad
7.
Chemosphere ; 283: 131210, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34146880

RESUMEN

Recently, the residues of quinolones have received widespread attention. However, toxicological studies on aquatic organisms are relatively scarce, especially on the liver metabolism and immune effects of these aquatic organisms. In this study, we investigated the toxic effects of carp exposed to 0, 100 ng/L, and 1 mg/L norfloxacin (NOR) at environmental concentrations for 42 days. In this study, through transcriptomics analysis, we found that some genes involved in lipid metabolism, immune response, and cytochrome P450 metabolism, especially genes accounting for the metabolism-related disorders of glucose and lipid. Defects in these genes and thus their related pathways increase the risk of coming down with nonalcoholic fatty liver disease. Compared to those of the control, results from the biochemical indicators of the treatment group changed significantly, including levels of total cholesterol, triglycerides, glucose, and insulin. Moreover, our results confirmed that NOR at environmental concentrations disordered the metabolism of glucose and lipid in the carp also resulted in hepatocellular and nuclear enlargement. Our results, therefore, confirmed that long-term exposure to NOR can induce carp liver toxicity at histological, biochemical, and transcriptional levels and provided the latest data and theoretical basis for the toxicology study of quinolones in the natural environment.


Asunto(s)
Carpas , Enfermedad Hepática Inducida por Sustancias y Drogas , Contaminantes Químicos del Agua , Animales , Carpas/genética , Hígado , Norfloxacino/toxicidad , Transcriptoma , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA