Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Phys Chem Chem Phys ; 21(32): 17673-17686, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31364625

RESUMEN

The thermally activated delayed fluorescence (TADF) material 2,3,5,6-tetrakis(3,6-diphenylcarbazol-9-yl)-1,4-dicyanobenzene (4CzTPN-Ph) and the conventional fluorescent dopant 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) were used to co-dope the host material 4,4'-bis(carbazol-9-yl)biphenyl (CBP) for the fabrication of TADF-assisted fluorescent organic light-emitting diodes (OLEDs). Some exceptional magnetic field effect (MFE) curves with abundant structures and four tunable components within a low magnetic field range (≤50 mT) were obtained, in sharp contrast to the maximum of two components observed in typical OLEDs. These MFE components were easily tuned by the injection current, dopant concentration, working temperature, and dopant energy gap, leading to a wide variety of MFE curve line shapes. The experimental results are attributed to the spin-pair state inter-conversions occurring in the device, including intersystem crossing (ISC) of CBP polaron pairs, ISC of 4CzTPN-Ph polaron pairs, reverse ISC (RISC) of 4CzTPN-Ph excitons, RISC of DCJTB polaron pairs, DCJTB triplet fusion, and DCJTB triplet-charge annihilation. Moreover, the exciton energy transfer processes among the host material and the guest dopants had a pronounced impact on the formation of these four components. This work gives a deeper understanding of the microscopic mechanisms of TADF-based co-doped systems for the further development of organic magnetic field effects in the extensive field of OLEDs.

2.
Phys Rev Lett ; 121(25): 256001, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30608818

RESUMEN

When adsorbed on solids, water molecules are usually arranged into a honeycomb hydrogen-bond network. Here we report the discovery of a novel monolayer ice built exclusively from water hexamers but without shared edges, distinct from all conventional ice phases. Water grown on graphite crystalizes into a robust monolayer ice after annealing, attaining an exceedingly high density of 0.134 Å^{-2}. Unlike chemisorbed ice on metal surfaces, the ice monolayer can translate and rotate on graphite terraces and grow across steps, confirming its two-dimensional nature. First-principles calculations identify the monolayer ice structure as a robust self-assembly of closely packed water hexamers without edge sharing, whose stability is maintained by maximizing the number of intralayer hydrogen bonds on inert surfaces.

3.
Nanotechnology ; 29(17): 175203, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29438100

RESUMEN

Compared to organic-inorganic hybrid metal halide perovskites, all-inorganic cesium lead halides (e.g, CsPbBr3) hold greater promise in being emissive materials for light-emitting diodes owing to their superior optoelectronic properties as well as their higher stabilities. However, there is still considerable potential for breakthroughs in the current efficiency of CsPbBr3 perovskite light-emitting diodes (PeLEDs). Electrode quenching is one of the main problems limiting the current efficiency of PeLEDs when poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is used as the hole injection layer. In this work, electrode quenching control was realized via incorporating Au NPs into PEDOT:PSS. As a result, the CsPbBr3 PeLEDs realized an improvement in maximum luminescence ranging from ∼2348 to ∼7660 cd m-2 (∼226% enhancement) and current efficiency from 1.65 to 3.08 cd A-1 (∼86% enhancement). Such substantial enhancement of the electroluminescent performance can be attributed to effective electrode quenching control at the PEDOT:PSS/CsPbBr3 perovskite interface via the combined effects of local surface plasma resonance coupling and enhanced hole transportation in the PEDOT:PSS layer by Au nanoparticles.

4.
Phys Chem Chem Phys ; 20(10): 7125-7131, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29479594

RESUMEN

Chiral switching of the self-assembled domains of CuPc molecules on the Cd(0001) surface has been investigated by means of a low temperature scanning tunneling microscopy (STM). With the coverage increasing, the CuPc molecules show the structural evolutions from an initial gas-like state to a network phase, a square phase, and finally to a compact phase at full monolayer. In the network and square phases, the achiral CuPc molecules reveal both the point chirality and chiral domains. In particular, the chirality of network domain can be switched from one enantiomer to another driven by the electric filed from a STM tip, which can also lead to the lattice rotation of network phase. These results demonstrate that (i) there is strong interaction between the CuPc molecules and STM tip; (ii) the adsorbed CuPc molecules carry considerable net charge or polarizability due to the charge transfer; (iii) the network phase has a low barrier for the interconversion between right- and left-handed domains. Our findings are significant for the understanding and control of the domain's chirality in the self-assembled structures.

5.
Phys Chem Chem Phys ; 18(44): 30733-30739, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27792226

RESUMEN

The effects of a magnetic field on the dissociation of triplet excitons by free charges (TCI) are well understood. However, the magneto-conductance (MC) characteristics of trapped triplet-polaron interactions (TtPI) and triplet-trapped polaron interactions (TPtI) within organic light emitting diodes (OLEDs) are not well understood. We have studied these interactions in an anthracene-based OLED. The electroluminescence spectra, current-voltage characteristics and magneto-electroluminescence indicated that the anthracene layer contained many defects that could trap either triplet excitons or polarons, which led to TPtI and TtPI. The MC curves at low temperature exhibited a complex line shape, which indicated that intersystem crossing, TPtI, TtPI, and TCI occurred simultaneously in the device. The individual MC characteristics of TPtI and TtPI were extracted from temperature dependant MC curves by fitting them to three empirical Lorentzian functions and one non-Lorentzian function. The MC of TPtI exhibited a negative sign, while that of TtPI exhibited a positive one, with characteristic magnetic fields (B0) of ∼10.5 and ∼15 mT, respectively. Both processes were prominent below 150 K and weakened with increasing temperature. TPtI was neglected above 200 K, while TtPI was observed even at ambient temperature. These results add significant insight into the magnetic field effects on triplet-polaron interactions.

6.
Phys Chem Chem Phys ; 18(32): 22373-8, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27461412

RESUMEN

Energy transfer (ET) and charge injection (CI) in the hybrid organic/colloidal quantum dot light-emitting diodes (QD-LEDs) have been investigated by using magneto-electroluminescence (MEL) as an in situ tool. The feasibility and availability of MEL as an in situ tool were systematically demonstrated in the typical QD-LEDs based on CdSe-ZnS core-shell QDs. Our results suggest that the ET and CI processes can be well discerned by MEL measurements since these two processes exhibit distinct responses to the applied magnetic field. Through measurement of the MEL and current efficiency, we indicated that ET would be the main mechanism for light emission in the present hybrid QD-LEDs. This study strongly suggests that MEL could be a highly sensitive fingerprint for ET, which provides a facile and efficient method for the in situ investigation of fundamental processes in hybrid organic/colloidal QD-LEDs and other organic/inorganic composites.

7.
Phys Chem Chem Phys ; 17(41): 27609-14, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26425964

RESUMEN

In organic semiconductors, the triplet-charge annihilation (TCA) is one of the most common excitonic interactions influencing the opto-electronic power conversion efficiency of the devices. However, it is still unclear whether the TCA reaction goes through the "Scattering Channel" or the "Dissociation Channel". In this work, by measuring the organic magneto-current (OMC) of the conjugated co-polymer poly[{9,9-dioctyl-2,7-divinylene-fluorenylene}-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenyene}] (PFOPV)-based organic light-emitting diodes (OLEDs) containing both localized exciton (LE) and charge-transfer-complex (CT), it is found that (3)LE and (3)CT play a crucial role in the "Scattering Channel" and the "Dissociation Channel" of TCA, respectively. This argument was supported by the simulations of Lorentzian and non-Lorentzian functions used, respectively, for intersystem crossing (or reverse intersystem crossing, RISC) and TCA effects. Moreover, by inserting a tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane (3TPYMB) layer between PFOPV and the cathode, we improved the electroluminescence efficiency of PFOPV-based OLEDs by suppressing the TCA when (3)CT involves in RISC. Our results give insights into the spin-dependent TCA limiting the efficiency of hotly discussed CT-based OLEDs.

8.
Phys Chem Chem Phys ; 15(39): 16891-7, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24002235

RESUMEN

In this work, we report our effort to understand the photocurrent generation that is contributed via electron-exciton interaction at the donor/acceptor interface in organic solar cells (OSCs). Donor/acceptor bi-layer heterojunction OSCs, of the indium tin oxide/copper phthalocyanine (CuPc)/fullerene (C60)/molybdenum oxide/Al type, were employed to study the mechanism of photocurrent generation due to the electron-exciton interaction, where CuPc and C60 are the donor and the acceptor, respectively. It is shown that the electron-exciton interaction and the exciton dissociation processes co-exist at the CuPc/C60 interface in OSCs. Compared to conventional donor/acceptor bi-layer OSCs, the cells with the above configuration enable holes to be extracted at the C60 side while electrons can be collected at the CuPc side, resulting in a photocurrent in the reverse direction. The photocurrent thus observed is contributed to primarily by the charge carriers that are generated by the electron-exciton interaction at the CuPc/C60 interface, while charges derived from the exciton dissociation process also exist at the same interface. The mechanism of photocurrent generation due to electron-exciton interaction in the OSCs is further investigated, and it is manifested by the transient photovoltage characteristics and the external quantum efficiency measurements.

9.
Adv Sci (Weinh) ; 10(29): e2303192, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37587760

RESUMEN

The high-level reverse intersystem crossing (HL-RISC, T2 → S1 ) process from triplet to singlet exciton, namely the "hot exciton" channel, has recently been demonstrated in the traditional fluorescent emitter of TBRb. Although it is a potential pathway to improve the utilization of non-radiative triplet exciton energy, highly efficient fluorescent organic light emitting diodes (FOLEDs) based on this "hot exciton" channel have not been developed. Herein, high-efficiency and low-efficiency roll-off FOLEDs are achieved through doping TBRb molecules into an energy-level matched exciplex co-host. Combining the low-level RISC (LL-RISC, EX3 → EX1 ) process in the exciplex co-host with the HL-RISC process of hot excitons in TBRb to fully harvest the triplet energy, a record-high external quantum efficiency (EQE) of 20.4% is obtained via a proper Dexter energy transfer of triplet excitons, realizing the efficiency breakthrough from fully fluorescent material-based OLEDs with TBRb as an end emitter. Furthermore, the fingerprint Magneto-electroluminescence (MEL) as a sensitive measuring tool is employed to visualize the "hot exciton" channel in TBRb, which also directly verifies the effective energy confinement and the full utilization of hot excitons. Obviously, this work paves a promising way for further fabricating high-efficiency TBRb-based FOLEDs for lighting and flat-panel display applications.

10.
ACS Omega ; 8(1): 791-803, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643427

RESUMEN

In this study, a waste walnut shell-derived biochar enriched with nitrogen (N-biochar) is mixed with nitrogen-doped TiO2 (N-TiO2) to fulfill an affordable composite material for the degradation of methyl orange (MO). Results showed that porous structure and oxygen-containing functional groups of biochar facilitate contact with MO during the reaction process. Meanwhile, doped nitrogen has a positive effect on improving the reaction activity due to the existence of a substituted state and a gap state in the catalyst. It was revealed that the N-TiO2/N-biochar (NCNT0.2/1) exhibited better photocatalytic degradation efficiency (97.6%) and mineralization rate (85.4%) of MO than that of TiO2, N-TiO2, and TiO2/N-biochar due to its stronger synergistic effect of N, TiO2, and biochar, in accordance with its high charge separation by photoluminescence (PL) analysis. Trapping experiments showed that ·OH is the predominant active species during the decolorization and mineralization process of MO. After five repeated use, the loss of activity of the catalyst was negligible. In addition, the catalytic degradation process was consistent with the pseudo-first-order kinetic model with the rate constant of 4.02 × 10-2 min-1.

11.
Small ; 8(13): 2078-82, 2012 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-22511522

RESUMEN

The supramolecular pinwheel cluster is a unique chiral structure with evident handedness. Previous studies reveal that the chiral pinwheels are composed of chiral or achiral molecules with polar groups, which result in strong intermolecular interactions such as hydrogen-bonding or dipole interactions. Herein, it is shown that the simple linear aromatic molecule, pentacene, can be self-assembled into large chiral pinwheel clusters on the semimetal Bi(111) surface, due to enhanced intermolecular interactions. The pentacene pinwheels reveal two levels of organizational chirality: the chiral hexamers resulting from asymmetric shifting along the long molecular axis, and chiral arrangement of six hexamers with a rotor motif. Furthermore, a new relation between the local point chirality and organizational chirality is identified from the pinwheels: the former is not essential for the latter in 2D pinwheel clusters of the pentacene molecule.

12.
ACS Appl Mater Interfaces ; 14(45): 51175-51182, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36335624

RESUMEN

A reliable encapsulation technology with scalability and flexibility is urgently needed for electroluminescence devices. Here, we developed a simple, robust, low-cost, and scalable flexible lamination encapsulation strategy with quantum-dot light-emitting diodes (QLEDs) as the model devices. Multilayered Parafilm combining with calcium oxide buffer was used for the lamination encapsulation. We successfully demonstrated that such a Parafilm Lami encapsulation (PLE) not only allowed excellent protection for QLEDs in air but endowed QLED outstanding waterproof performance. As a result, highly efficient and stable flexible waterproof QLEDs were realized based on this PLE, exhibiting maximum external quantum efficiency of ∼8% and long half-luminescence lifetime of over 1.5 h in water. We believe that there are not any obstacles to extending this encapsulation technology to other flexible flat-panel devices, such as organic/perovskite light-emitting diodes.

13.
Opt Express ; 19(8): 7274-9, 2011 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-21503038

RESUMEN

Electric field (E field) distributions of the silver rod-film nanostructures are calculated by the finite difference time domain method and compared with those of the individual nanorods. For the rod-film nanostructure, the incident waves are reflected back by the base layer and the superposition of the E fields of the incident wave and the reflection wave works as the excitation for the transverse mode electron oscillations in the nanorod, which results in the much enhanced E fields around the lateral surface of the nanorod. In addition, we investigate how the structural parameters of the rod-film nanostructure affect the E fields along the nanorod. These results would be much helpful for designing larger intensity surface enhanced Raman scattering substrates.

14.
Mater Horiz ; 8(10): 2785-2796, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34605830

RESUMEN

An unreported unprecedented spike of ∼µs line-width, followed by an overshoot, was discovered at the rising edge of transient electroluminescence (TEL) from guest-doped organic light-emitting diodes with strong electron-donating abilities from the host carbazole groups. By changing the device structures and TEL measurement parameters, a series of experimental results demonstrate that this TEL spike is not related to exciton interactions such as singlet-triplet and triplet-triplet annihilations but originated from the radiative recombination of pre-stored electrons with injected holes. Surprisingly, these pre-stored guest electrons do not come from the energy-level traps in the host-guest systems; instead, the guest molecules receive the electrons transferred from the host carbazole groups due to their strong electron-donating abilities. Moreover, the observed spikes show rich and extraordinary temperature dependences. Based on the detailed understanding of the spike formation mechanism, we have proposed the requirements for the occurrence of spike and realized the artificial adjustments of the spike intensity. For instance, the instantaneous luminescent intensity of this spike can reach over 80 times the magnitude of the TEL plateau. Accordingly, this work deepens the physical understanding of this novel spike in TEL and paves the way for fabricating an electro-optic sensor to detect instantaneous weak current signals.

15.
J Phys Chem Lett ; 11(8): 2804-2811, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32191490

RESUMEN

Using the fingerprint magneto-electroluminescence trace, we observe a fascinating high-level reverse intersystem crossing (HL-RISC) in rubrene-doped organic light-emitting diodes (OLEDs). This HL-RISC is achieved from high-lying triplet states (T2,rub) transferred from host triplet states by the Dexter energy transfer to the lowest singlet states (S1,rub) in rubrene. Although HL-RISC decreases with bias current, it increases with lowering temperature. This is contrary to the temperature-dependent RISC from conventional thermally activated delayed fluorescence, because HL-RISC is an exothermic process instead. Moreover, owing to the competition of exciton energy transfer with direct charge trap, HL-RISC changes nonmonotonically with the dopant concentration and increases luminous efficiency to a maximum at 10% of rubrene, which is about ten times greater than that from the pure-rubrene device. Additionally, the HL-RISC process is not observed in bare rubrene-doped films because of the absence of T2,rub. Our findings pave the way for designing highly efficient orange fluorescent OLEDs.

16.
ACS Omega ; 5(41): 26335-26346, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33110961

RESUMEN

The exploration of high-value-added materials using inorganic solid waste is a very important contribution to sustainable development. Coal gangue ash (CGA) as a solid waste was chosen as catalyst support. Five low-cost catalysts modified by different promoters (Co, Ce, Fe, Mn, and Mo) were prepared using a co-impregnation method. The toluene steam reforming tests were carried out at 800 °C under S/C = 2 (steam-to-carbon mole ratio). Catalyst characteristics were evaluated using X-ray diffraction (XRD), the Brunauer-Emmett-Teller (BET) method, temperature-programmed reduction (TPR), and Raman spectroscopy. The results showed that most promoters could interact with a Ni active compound and enhance the toluene conversion and H2 yield. The Mo-Ni/CGA-1d (1d means the acid pretreatment time) catalyst performed the best catalytic activity, and corresponding toluene conversion and H2 yield was equal to 92.6 and 62.3%, respectively, and it should be due to the formation of Mo-Ni alloy. Meanwhile, the Mo-Ni/CGA-1d catalyst exhibited higher stability during the runtime of 300 min compared with the Mn-Ni/CGA-1d catalyst, which can be attributed to the formation of the Mo2C structure with high-carbon-resistance ability. This is perhaps because the dissociation of CO2 or H2O on the Mo2C structure surface is beneficial to the production of free oxygen species, which can accelerate the removal of carbon deposition on the catalyst surface.

17.
Nanotechnology ; 20(9): 095704, 2009 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-19417500

RESUMEN

We report two distinct growth modes of pentacene (PEN) and perfluoropentacene (PFP) films on a Bi(0001) substrate investigated by scanning tunneling microscopy (STM). PEN grows epitaxially on Bi(0001) at room temperature (RT), resulting in the formation of bulk-like crystalline films. In contrast, submonolayer PFP forms a two-dimensional (2D) liquid-like phase with PFP molecules loosely bound on Bi(0001). Beyond one monolayer, the PFP molecules diffuse over very long distances to aggregate into three-dimensional (3D) islands, leading to a rough film morphology. Utilizing the stacking interaction at the PFP/PEN interface, we deposited PFP on the template of an ordered PEN monolayer formed on Bi. It is found that PFP molecules nucleate into ordered crystalline islands with PFP molecules standing-up. The different morphologies of PEN and PFP overlayers can be understood in terms of perfluorination induced decoupling of PFP molecules from the Bi substrate below.


Asunto(s)
Bismuto/química , Cristalización/métodos , Fluorocarburos/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Naftacenos/química , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
18.
RSC Adv ; 9(28): 15845-15851, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35521377

RESUMEN

The spin polarization and spin-orbit coupling (SOC) in polymer light emitting diodes (PLEDs) with the active layer doped with Fe3O4 nanoparticles (NPs) were identified through magneto-electroluminescence (MEL). By comparing the MEL characteristics such as linewidth and magnitude between PLEDs with and without Fe3O4 dopant, we confirmed the existence of spin polarization, but ruled out the existence of SOC. Although the spin polarization is positive to electroluminescence, the brightness-current characteristics suggested that the current efficiency of the doped PLED does not improve. We attributed it to the current leakage caused by the Fe3O4 NPs in the active layer. This work is beneficial for us to further understand the effect of magnetic nanoparticle doping on the dynamic behavior of excitons and polaron pairs in organic semiconductor devices.

19.
ACS Appl Mater Interfaces ; 10(2): 1948-1956, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29300090

RESUMEN

Singlet fission is usually the only reaction channel for excited states in rubrene-based organic light-emitting diodes (OLEDs) at ambient temperature. Intriguingly, we discover that triplet fusion (TF) and intersystem crossing (ISC) within rubrene-based devices begin at moderate and high current densities (j), respectively. Both processes enhance with decreasing temperature. This behavior is discovered by analyzing the magneto-electroluminescence curves of the devices. The j-dependent magneto-conductance, measured at ambient temperature indicates that spin mixing within polaron pairs that are generated by triplet-charge annihilation (TQA) causes the occurrence of ISC, while the high concentrations of triplets are responsible for generating TF. Additionally, the reduction in exciton formation and the elevated TQA with decreasing temperature may contribute to the enhanced ISC at low temperatures. This work provides considerable insight into the different mechanisms that occur when a high density of excited states exist in rubrene and reasonable reasons for the absence of EL efficiency roll-off in rubrene-based OLEDs.

20.
RSC Adv ; 8(28): 15698-15702, 2018 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35539492

RESUMEN

A novel mixed perovskite emitter layer is applied to design all-inorganic cesium lead halide perovskite light-emitting diodes (PeLEDs) with high electroluminescence (EL) performance, by combining CsPbBr3 with iridium(iii)bis[2-(4',6'-difluorophenyl)pyridinato-N,C2']-picolinate (FIrpic), where FIrpic is a phosphorescent material with very high internal quantum efficiency (IQE) approaching 100%. The CsPbBr3:FIrpic PeLEDs show a maximum luminance of 5486 cd m-2, and an external quantum efficiency of 0.47%, which are 1.84 and 1.76 times that of neat CsPbBr3 PeLEDs, respectively. It is found that FIrpic molecules as an assistant dopant can efficiently transmit energy from the excitons of FIrpic to the excited state of the CsPbBr3 emitter via a Förster energy transfer process, leading to enhanced EL efficiency in the CsPbBr3:FIrpic PeLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA