Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 195(1): 430-445, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38198212

RESUMEN

The essential role of plastid translation in embryogenesis has been established in many plants, but a retrograde signal triggered by defective plastid translation machinery that may leads to embryogenesis arrest remains unknown. In this study, we characterized an embryo defective27 (emb27) mutant in maize (Zea mays), and cloning indicates that Emb27 encodes the plastid ribosomal protein S13. The null mutant emb27-1 conditions an emb phenotype with arrested embryogenesis; however, the leaky mutant emb27-2 exhibits normal embryogenesis but an albino seedling-lethal phenotype. The emb27-1/emb27-2 trans-heterozygotes display varying phenotypes from emb to normal seeds but albino seedlings. Analysis of the Emb27 transcription levels in these mutants revealed that the Emb27 expression level in the embryo corresponds with the phenotypic expression of the emb27 mutants. In the W22 genetic background, an Emb27 transcription level higher than 6% of the wild-type level renders normal embryogenesis, whereas lower than that arrests embryogenesis. Mutation of Emb27 reduces the level of plastid 16S rRNA and the accumulation of the plastid-encoded proteins. As a secondary effect, splicing of several plastid introns was impaired in emb27-1 and 2 other plastid translation-defective mutants, emb15 and emb16, suggesting that plastome-encoded factors are required for the splicing of these introns, such as Maturase K (MatK). Our results indicate that EMB27 is essential for plastid protein translation, embryogenesis, and seedling development in maize and reveal an expression threshold of Emb27 for maize embryogenesis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas de Plantas , Plastidios , Plantones , Semillas , Zea mays , Zea mays/genética , Zea mays/embriología , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación/genética , Plastidios/genética , Plastidios/metabolismo , Fenotipo , Empalme del ARN/genética , Intrones/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
2.
Blood ; 142(10): 903-917, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37319434

RESUMEN

The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.


Asunto(s)
Proteína 7 Similar a la Angiopoyetina , Proteína 1 Inhibidora de la Diferenciación , Leucemia Mieloide Aguda , Animales , Ratones , Proteína 7 Similar a la Angiopoyetina/genética , Proteína 7 Similar a la Angiopoyetina/metabolismo , Médula Ósea/metabolismo , Modelos Animales de Enfermedad , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Microambiente Tumoral , Humanos , Proteína 1 Inhibidora de la Diferenciación/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(39): e2210978119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122211

RESUMEN

Identifying the PPR-E+-NUWA-DYW2 editosome improves our understanding of the C-to-U RNA editing in plant organelles. However, the mechanism of RNA editing remains to be elucidated. Here, we report that GLUTAMINE-RICH PROTEIN23 (GRP23), a previously identified nuclear transcription regulator, plays an essential role in mitochondrial RNA editing through interacting with MORF (multiple organellar RNA-editing factor) proteins and atypical DYW-type pentatricopeptide repeat (PPR) proteins. GRP23 is targeted to mitochondria, plastids, and nuclei. Analysis of the grp23 mutants rescued by embryo-specific complementation shows decreased editing efficiency at 352 sites in mitochondria and 6 sites in plastids, with a predominant specificity for sites edited by the PPR-E and PPR-DYW proteins. GRP23 interacts with atypical PPR-DYW proteins (MEF8, MEF8S, DYW2, and DYW4) and MORF proteins (MORF1 and MORF8), whereas the four PPR-DYWs interact with the two MORFs. These interactions may increase the stability of the GRP23-MORF-atypical PPR-DYW complex. Furthermore, analysis of mef8N△64aamef8s double mutants shows that MEF8/MEF8S are required for the editing of the PPR-E protein-targeted sites in mitochondria. GRP23 could enhance the interaction between PPR-E and MEF8/MEF8S and form a homodimer or heterodimer with NUWA. Genetic complementation analysis shows that the C-terminal domains of GRP23 and NUWA possess a similar function, probably in the interaction with the MORFs. NUWA also interacts with atypical PPR-DYWs in yeast. Both GRP23 and NUWA interact with the atypical PPR-DYWs, suggesting that the PPR-E proteins recruit MEF8/MEF8S, whereas the PPR-E+ proteins specifically recruit DYW2 as the trans deaminase, and then GRP23, NUWA, and MORFs facilitate and/or stabilize the E or E+-type editosome formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Edición de ARN , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mitocondrias/metabolismo , Edición de ARN/genética , ARN Mitocondrial/metabolismo , Factores de Transcripción/metabolismo
4.
BMC Genomics ; 25(1): 357, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600449

RESUMEN

BACKGROUND: Broodiness significantly impacts poultry egg production, particularly notable in specific breeds such as the black-boned Silky, characterized by pronounced broodiness. An understanding of the alterations in ovarian signaling is essential for elucidating the mechanisms that influence broodiness. However, comparative research on the characteristics of long non-coding RNAs (lncRNAs) in the ovaries of broody chickens (BC) and high egg-laying chickens (GC) remains scant. In this investigation, we employed RNA sequencing to assess the ovarian transcriptomes, which include both lncRNAs and mRNAs, in eight Taihe Black-Bone Silky Fowls (TBsf), categorized into broody and high egg-laying groups. This study aims to provide a clearer understanding of the genetic underpinnings associated with broodiness and egg production. RESULTS: We have identified a total of 16,444 mRNAs and 18,756 lncRNAs, of which 349 mRNAs and 651 lncRNAs exhibited significantly different expression (DE) between the BC and GC groups. Furthermore, we have identified the cis-regulated and trans-regulated target genes of differentially abundant lncRNA transcripts and have constructed an lncRNA-mRNA trans-regulated interaction network linked to ovarian follicle development. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses have revealed that DE mRNAs and the target genes of DE lncRNAs are associated with pathways including neuroactive ligand-receptor interaction, CCR6 chemokine receptor binding, G-protein coupled receptor binding, cytokine-cytokine receptor interaction, and ECM-receptor interaction. CONCLUSION: Our research presents a comprehensive compilation of lncRNAs and mRNAs linked to ovarian development. Additionally, it establishes a predictive interaction network involving differentially abundant lncRNAs and differentially expressed genes (DEGs) within TBsf. This significantly contributes to our understanding of the intricate interactions between lncRNAs and genes governing brooding behavior.


Asunto(s)
Pollos , ARN Largo no Codificante , Femenino , Animales , Pollos/genética , Pollos/metabolismo , Ovario/metabolismo , ARN Largo no Codificante/metabolismo , Perfilación de la Expresión Génica , ARN Mensajero/metabolismo , Redes Reguladoras de Genes
5.
Langmuir ; 40(9): 5001-5010, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38388338

RESUMEN

MgO has broad application potential in CO2 capture at intermedium temperatures. In this paper, the effects of NaNO3 doping on the properties of MgO prepared by using waste bischofite as the raw material were investigated to improve the performance of the CO2 capture. MgO-doped NaNO3 exhibited excellent CO2 capture performance at 320 °C with a maximum adsorption capacity of 36.62 wt %. MgO-doped NaNO3 has good cycling stability after 10 adsorption-desorption cycle experiments. In addition, CO2 adsorption on pure MgO and MgO-NaNO3 surfaces was investigated in accordance with density functional theory. Calculation results show that doping with NaNO3 allows more electrons to be transferred from the MgO substrate to the CO2 molecule. MgO-doped NaNO3 can lead to an increase in adsorption energy, resulting in a more stable structure after adsorption and thereby promoting adsorption. The result of this study provides an effective method for the comprehensive utilization of salt lake resources.

6.
J Integr Plant Biol ; 65(11): 2456-2468, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37594235

RESUMEN

RNA helicases participate in nearly all aspects of RNA metabolism by rearranging RNAs or RNA-protein complexes in an adenosine triphosphate-dependent manner. Due to the large RNA helicase families in plants, the precise roles of many RNA helicases in plant physiology and development remain to be clarified. Here, we show that mutations in maize (Zea mays) DEAD-box RNA helicase 48 (ZmRH48) impair the splicing of mitochondrial introns, mitochondrial complex biosynthesis, and seed development. Loss of ZmRH48 function severely arrested embryogenesis and endosperm development, leading to defective kernel formation. ZmRH48 is targeted to mitochondria, where its deficiency dramatically reduced the splicing efficiency of five cis-introns (nad5 intron 1; nad7 introns 1, 2, and 3; and ccmFc intron 1) and one trans-intron (nad2 intron 2), leading to lower levels of mitochondrial complexes I and III. ZmRH48 interacts with two unique pentatricopeptide repeat (PPR) proteins, PPR-SMR1 and SPR2, which are required for the splicing of over half of all mitochondrial introns. PPR-SMR1 interacts with SPR2, and both proteins interact with P-type PPR proteins and Zm-mCSF1 to facilitate intron splicing. These results suggest that ZmRH48 is likely a component of a splicing complex and is critical for mitochondrial complex biosynthesis and seed development.


Asunto(s)
Proteínas de Plantas , Zea mays , Humanos , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Intrones/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Regulación de la Expresión Génica de las Plantas , Semillas/metabolismo , Mitocondrias/metabolismo , ARN/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo
7.
Plant J ; 106(1): 214-227, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33450100

RESUMEN

Ribosome assembly factors guide the complex process by which ribosomal proteins and the ribosomal RNAs form a functional ribosome. However, the assembly of plant plastid ribosomes is poorly understood. In the present study, we discovered a maize (Zea mays) plastid ribosome assembly factor based on our characterization of the embryo defective 15 (emb15) mutant. Loss of function of Emb15 retards embryo development at an early stage, but does not substantially affect the endosperm, and causes an albino phenotype in other genetic backgrounds. EMB15 localizes to plastids and possesses a ribosome maturation factor M (RimM) domain in the N-terminus and a predicted UDP-GlcNAc pyrophosphorylase domain in the C-terminus. The EMB15 RimM domain originated in bacteria and the UDP-GlcNAc pyrophosphorylase domain originated in fungi; these two domains came together in the ancestor of land plants during evolution. The N-terminus of EMB15 complemented the growth defect of an Escherichia coli strain with a RimM deletion and rescued the albino phenotype of emb15 homozygous mutants. The RimM domain mediates the interaction between EMB15 and the plastid ribosomal protein PRPS19. Plastid 16S rRNA maturation is also significantly impaired in emb15. These observations suggest that EMB15 functions in maize seed development as a plastid ribosome assembly factor, and the C-terminal domain is not important under normal conditions.


Asunto(s)
Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Ribosomas/metabolismo , Semillas/metabolismo , Zea mays/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Plastidios/genética , Ribosomas/genética , Semillas/genética , Zea mays/genética
8.
New Phytol ; 234(4): 1237-1248, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35243635

RESUMEN

RNA C-to-U editing is important to the expression and function of organellar genes in plants. Although several families of proteins have been identified to participate in this process, the underlying mechanism is not fully understood. Here we report the function of EMP80 in the C-to-U editing at the nad7-769 and atp4-118 sites, and the potential recruitment of ZmDYW2 as a trans deaminase in maize (Zea mays) mitochondria. Loss of EMP80 function arrests embryogenesis and endosperm development in maize. EMP80 is a PPR-E+ protein localised to mitochondria. An absence of EMP80 abolishes the C-to-U RNA editing at nad7-769 and atp4-118 sites, resulting in a cysteine-to-arginine (Cys→Arg) change in Nad7 and Atp4 in the emp80 mutant. The amino acid change consequently reduces the assembly of complexes I and V, leading to an accumulation of the F1 subcomplex of complex V. EMP80 was found to interact with atypical DYW-type PPR protein ZmDYW2, which interacts with ZmNUWA. Co-expression of ZmNUWA enhances the interaction between EMP80 and ZmDYW2, suggesting that EMP80 potentially recruits ZmDYW2 as a trans deaminase through protein-protein interaction, and ZmNUWA may function as an enhancer of this interaction.


Asunto(s)
Proteínas de Plantas , Zea mays , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética , Zea mays/metabolismo
9.
Blood ; 135(25): 2271-2285, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32202636

RESUMEN

SETD2, the histone H3 lysine 36 methyltransferase, previously identified by us, plays an important role in the pathogenesis of hematologic malignancies, but its role in myelodysplastic syndromes (MDSs) has been unclear. In this study, low expression of SETD2 correlated with shortened survival in patients with MDS, and the SETD2 levels in CD34+ bone marrow cells of those patients were increased by decitabine. We knocked out Setd2 in NUP98-HOXD13 (NHD13) transgenic mice, which phenocopies human MDS, and found that loss of Setd2 accelerated the transformation of MDS into acute myeloid leukemia (AML). Loss of Setd2 enhanced the ability of NHD13+ hematopoietic stem and progenitor cells (HSPCs) to self-renew, with increased symmetric self-renewal division and decreased differentiation and cell death. The growth of MDS-associated leukemia cells was inhibited though increasing the H3K36me3 level by using epigenetic modifying drugs. Furthermore, Setd2 deficiency upregulated hematopoietic stem cell signaling and downregulated myeloid differentiation pathways in the NHD13+ HSPCs. Our RNA-seq and chromatin immunoprecipitation-seq analysis indicated that S100a9, the S100 calcium-binding protein, is a target gene of Setd2 and that the addition of recombinant S100a9 weakens the effect of Setd2 deficiency in the NHD13+ HSPCs. In contrast, downregulation of S100a9 leads to decreases of its downstream targets, including Ikba and Jnk, which influence the self-renewal and differentiation of HSPCs. Therefore, our results demonstrated that SETD2 deficiency predicts poor prognosis in MDS and promotes the transformation of MDS into AML, which provides a potential therapeutic target for MDS-associated acute leukemia.


Asunto(s)
Anemia Refractaria con Exceso de Blastos/patología , Calgranulina B/fisiología , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/fisiología , Leucemia Mieloide Aguda/etiología , Anemia Refractaria con Exceso de Blastos/genética , Anemia Refractaria con Exceso de Blastos/metabolismo , Animales , Calgranulina B/biosíntesis , Calgranulina B/genética , Transformación Celular Neoplásica , Células Cultivadas , Decitabina/farmacología , Regulación hacia Abajo , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Código de Histonas/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/biosíntesis , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Síndromes Mielodisplásicos/patología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Fusión Oncogénica/genética , Pronóstico , Proteínas Recombinantes/uso terapéutico , Factores de Tiempo , Análisis de Matrices Tisulares , Transcriptoma
10.
BMC Infect Dis ; 22(1): 303, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351036

RESUMEN

BACKGROUND: To analyze the clinical features, risk factors and outcomes of Aeromonas bloodstream infections (BSIs) in patients with hematological diseases to establish an effective optimal therapy against it. METHODS: A retrospective study was performed by reviewing medical records of patients admitted to a tertiary blood disease hospital in China. Patients with hematological diseases who suffered from Aeromonas bacteremia during January 2002 to December 2020 were enrolled in this study. RESULTS: A total of 63 patients who developed Aeromonas bacteremia were enrolled in the study, and 91.9% of patients were neutropenic at the onset of BSIs. The major complications were skin and soft tissue infection (SSTI) (22.2%), followed by gastroenteritis (19.0%) and pneumonia (14.3%). High carbapenem resistance rates (70.8% for imipenem, 71.4% for meropenem) were note among the cases. Furthermore, Aeromonas strains isolated from five individuals developed resistance to quinolone, ß-lactams and tigecycline during the therapy. The 30-day mortality rate was 15.9%, while bacteremia with SSTI showed a much worse prognosis, with 50.0% (7/14) of the patients dying within 30 days of initiating the therapy. In the multivariate analysis, SSTI (OR = 28.72; 95% CI, 1.50-551.30; P = 0.026) and shock (OR = 47.58; 95% CI,1.06-2126.80; P = 0.046) were independent risk factors for mortality. CONCLUSIONS: Aeromonas bacteremia usually occurred in patients with neutropenic status, and patients with SSTIs were more likely to show a worse prognosis. Carbapenems should be avoided in patients with Aeromonas BSIs and SSTIs given high resistance rate.


Asunto(s)
Aeromonas , Bacteriemia , Enfermedades Hematológicas , Bacteriemia/tratamiento farmacológico , Bacteriemia/epidemiología , Enfermedades Hematológicas/complicaciones , Humanos , Estudios Retrospectivos , Factores de Riesgo
11.
PLoS Genet ; 15(8): e1008305, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31374076

RESUMEN

C-to-U editing is an important event in post-transcriptional RNA processing, which converts a specific cytidine (C)-to-uridine (U) in transcripts of mitochondria and plastids. Typically, the pentatricopeptide repeat (PPR) protein, which specifies the target C residue by binding to its upstream sequence, is involved in the editing of one or a few sites. Here we report a novel PPR-DYW protein EMP21 that is associated with editing of 81 sites in maize. EMP21 is localized in mitochondria and loss of the EMP21 function severely inhibits the embryogenesis and endosperm development in maize. From a scan of 35 mitochondrial transcripts produced by the Emp21 loss-of-function mutant, the C-to-U editing was found to be abolished at five sites (nad7-77, atp1-1292, atp8-437, nad3-275 and rps4-870), while reduced at 76 sites in 21 transcripts. In most cases, the failure to editing resulted in the translation of an incorrect residue. In consequence, the mutant became deficient with respect to the assembly and activity of mitochondrial complexes I and V. As six of the decreased editing sites in emp21 overlap with the affected editing sites in emp5-1, and the editing efficiency at rpl16-458 showed a substantial reduction in the emp21-1 emp5-4 double mutant compared with the emp21-1 and emp5-4 single mutants, we explored their interaction. A yeast two hybrid assay suggested that EMP21 does not interact with EMP5, but both EMP21 and EMP5 interact with ZmMORF8. Together, these results indicate that EMP21 is a novel PPR-DYW protein required for the editing of ~17% of mitochondrial target Cs, and the editing process may involve an interaction between EMP21 and ZmMORF8 (and probably other proteins).


Asunto(s)
Proteínas de Plantas/metabolismo , Edición de ARN , ARN Mitocondrial/metabolismo , Proteínas de Unión al ARN/metabolismo , Zea mays/fisiología , Complejo I de Transporte de Electrón/metabolismo , Desarrollo Embrionario/genética , Endospermo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación con Pérdida de Función , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Dominios Proteicos/genética , Proteínas de Unión al ARN/genética
12.
Proc Natl Acad Sci U S A ; 116(3): 890-899, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30593567

RESUMEN

The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO-containing transcription factor complex (AETFC), that contains multiple transcription (co)factors. Among these AETFC components, HEB and E2A, two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA-binding capacity to AETFC, and are essential for leukemogenesis. However, the third E protein, E2-2, is specifically silenced in AML1-ETO-expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO-expressing leukemic cells, and this inhibition requires the bHLH DNA-binding domain. RNA-seq and ChIP-seq analyses reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with dendritic cell differentiation and represses MYC target genes. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO, is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates leukemogenesis. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO-mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a heterogeneity of AETFC, which improves our understanding of the precise mechanism of leukemogenesis and assists development of diagnostic/therapeutic strategies.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Leucemia Mieloide Aguda/etiología , Proteínas de Fusión Oncogénica/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Humanos , Leucemia Mieloide Aguda/metabolismo , Recurrencia
13.
Plant J ; 103(5): 1767-1782, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32559332

RESUMEN

The self-splicing of group II introns during RNA processing depends on their catalytic structure and is influenced by numerous factors that promote the formation of that structure through direct binding. Here we report that C-to-U editing at a specific position in two nad7 introns is essential to splicing, which also implies that the catalytic activity of non-functional group II introns could be restored by editing. We characterized a maize (Zea mays) mutant, dek46, with a defective kernel phenotype; Dek46 encodes a pentatricopeptide repeat DYW protein exclusively localized in mitochondria. Analyses of the coding regions of mitochondrial transcripts did not uncover differences in RNA editing between dek46 mutant and wild-type maize, but showed that splicing of nad7 introns 3 and 4 is severely reduced in the mutant. Furthermore, editing at nucleotide 22 of domain 5 (D5-C22) of both introns is abolished in dek46. We constructed chimeric introns by swapping D5 of P.li.LSUI2 with D5 of nad7 intron 3. In vitro splicing assays indicated that the chimeric intron containing D5-U22 can be self-spliced, but the one containing D5-C22 cannot. These results indicate that DEK46 functions in the C-to-U editing of D5-C22 of both introns, and the U base at this position is critical to intron splicing.


Asunto(s)
Intrones , Mitocondrias/metabolismo , Semillas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Empalme del ARN , ARN de Planta/genética , ARN de Planta/metabolismo , Semillas/metabolismo , Zea mays/metabolismo
14.
FASEB J ; 34(11): 14336-14352, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32888237

RESUMEN

Long noncoding RNAs (lncRNAs) are crucial in many cellular processes, yet relatively few have been shown to regulate human cardiomyocyte differentiation. Here, we demonstrate an essential role of GATA6 antisense RNA 1 (GATA6-AS1) in cardiomyocyte differentiation from human pluripotent stem cells (hPSCs). GATA6-AS1 is adjacent to cardiac transcription factor GATA6. We found that GATA6-AS1 was nuclear-localized and transiently upregulated along with GATA6 during the early stage of cardiomyocyte differentiation. The knockdown of GATA6-AS1 did not affect undifferentiated cell pluripotency but inhibited cardiomyocyte differentiation, as indicated by no or few beating cardiomyocytes and reduced expression of cardiomyocyte-specific proteins. Upon cardiac induction, the knockdown of GATA6-AS1 decreased GATA6 expression, altered Wnt-signaling gene expression, and reduced mesoderm development. Further characterization of the intergenic region between genomic regions of GATA6-AS1 and GATA6 indicated that the expression of GATA6-AS1 and GATA6 were regulated by a bidirectional promoter within the intergenic region. Consistently, GATA6-AS1 and GATA6 were co-expressed in several human tissues including the heart, similar to the mirror expression pattern of GATA6-AS1 and GATA6 during cardiomyocyte differentiation. Overall, these findings reveal a previously unrecognized and functional role of lncRNA GATA6-AS1 in controlling human cardiomyocyte differentiation.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , ARN sin Sentido/genética , ARN Largo no Codificante/genética , Animales , Línea Celular , Factor de Transcripción GATA6/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , ARN sin Sentido/metabolismo , ARN Largo no Codificante/metabolismo
15.
Circ Res ; 124(4): 526-538, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30590978

RESUMEN

RATIONALE: Congenital heart disease can lead to life-threatening right ventricular (RV) heart failure. Results from clinical trials support expanding cardiac progenitor cell (CPC) based therapies. However, our recent data show that CPCs lose function as they age, starting as early as 1 year. OBJECTIVE: To determine whether the aggregation of child (1-5-year-old) CPCs into scaffold-free spheres can improve differentiation by enhancing Notch signaling, a known regulator of CPC fate. We hypothesized that aggregated (3-dimensional [3D]) CPCs will repair RV heart failure better than monolayer (2-dimensional [2D]) CPCs. METHODS AND RESULTS: Spheres were produced with 1500 CPCs each using a microwell array. CPC aggregation significantly increased gene expression of Notch1 compared with 2D CPCs, accompanied by significant upregulation of cardiogenic transcription factors (GATA4, HAND1, MEF2C, NKX2.5, and TBX5) and endothelial markers (CD31, FLK1, FLT1, VWF). Blocking Notch receptor activation with the γ-secretase inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) diminished these effects. To evaluate the therapeutic improvements of CPC aggregation, RV heart failure was induced in athymic rats by pulmonary artery banding, and cells were implanted into the RV free wall. Echocardiographic measurements 28 days postimplantation showed significantly improved RV function with 3D compared with 2D CPCs. Tracking implanted CPCs via DiR (1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide)-labeling showed improved retention of 3D CPCs. Transducing 3D CPCs with Notch1-shRNA (short hairpin RNA) did not reduce retention, but significantly reduced RV functional improvements. Histological analyses showed 3D treatment reduced RV fibrosis and increased angiogenesis. Although 3D CPCs formed CD31+ vessel-like cells in vivo, these effects are more likely because of improved 3D CPC exosome function compared with 2D CPC exosomes. CONCLUSIONS: Spherical aggregation improves child CPC function in a Notch-dependent manner. The strong reparative ability of CPC spheres warrants further investigation as a treatment for pediatric heart failure, especially in older children where reparative ability may be reduced.


Asunto(s)
Agregación Celular , Cardiopatías Congénitas/patología , Insuficiencia Cardíaca/terapia , Receptores Notch/metabolismo , Esferoides Celulares/metabolismo , Trasplante de Células Madre/métodos , Disfunción Ventricular Derecha/terapia , Animales , Diferenciación Celular , Células Cultivadas , Niño , Preescolar , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/terapia , Insuficiencia Cardíaca/etiología , Humanos , Lactante , Masculino , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas , Transducción de Señal , Esferoides Celulares/citología , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Disfunción Ventricular Derecha/complicaciones
16.
RNA Biol ; 18(4): 499-509, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32936708

RESUMEN

Pentatricopeptide repeat (PPR) proteins play an important role in post-transcriptional regulation of mitochondrial gene expression. Functions of many PPR proteins and their roles in plant growth and development remain unknown. Through characterization of an empty pericarp32 (emp32) mutant, we identified the function of Emp32 in mitochondrial intron splicing and seed development in maize. The loss-of-function mutant emp32 shows embryo lethality with severely arrested embryo and endosperm development, and over-expression of Emp32 rescues the embryo-lethality. EMP32 is a P-type PPR protein targeted to mitochondria. Loss of function in Emp32 dramatically decreases the splicing efficiency of nad7 intron 2, while complementation of Emp32 restores the splicing efficiency. Although nad7 intron 2 is partially spliced in the wild type, over-expression of Emp32 does not increase the splicing efficiency. The splicing deficiency of nad7 intron 2 blocks the assembly of mitochondrial complex I and dramatically reduces its activity, which may explain the embryo-lethality in emp32. In addition to the one copy of nad7 in the maize mitochondrial genome, we identified one to six copies of nad7 in the nuclear genomes in different maize inbred lines. These copies appear not to be expressed. Together, our results revealed that the P-type PPR protein EMP32 is required for the cis-splicing of nad7 intron 2 and seed development in maize.


Asunto(s)
NADH Deshidrogenasa/genética , Proteínas de Plantas/fisiología , Empalme del ARN/genética , Zea mays , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Intrones/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Zea mays/genética , Zea mays/crecimiento & desarrollo
17.
Plant Cell Physiol ; 61(2): 370-380, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31670803

RESUMEN

Pentatricopeptide repeat (PPR) proteins are helical repeat RNA-binding proteins that function in RNA processing by conferring sequence-specific RNA-binding activity. Owing to the lethality of PPR mutants, functions of many PPR proteins remain obscure. In this study, we report the function of PPR20 in intron splicing in mitochondria and its role in maize seed development. PPR20 is a P-type PPR protein targeted to mitochondria. The ppr20 mutants display slow embryo and endosperm development. Null mutation of PPR20 severely reduces the cis-splicing of mitochondrial nad2 intron 3, resulting in reduction in the assembly and activity of mitochondrial complex I. The ppr20-35 allele with a Mu insertion in the N-terminal region shows a much weaker phenotype. Molecular analyses revealed that the mutant produces a truncated transcript, coding for PPR20ΔN120 lacking the N-terminal 120 amino acids. Subcellular localization revealed that PPR20ΔN120:GFP is able to target to mitochondria as well, suggesting the sequence diversity of the mitochondrial targeting peptides. Another mutant zm_mterf15 was also found to be impaired in the splicing of mitochondrial nad2 intron 3. Further analyses are required to identify the exact function of PPR20 and Zm_mTERF15 in the splicing of nad2 intron 3.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Intrones/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Empalme del ARN , Semillas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Alelos , Complejo I de Transporte de Electrón/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Mitocondriales/genética , Mutación , Fenotipo , Desarrollo de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Unión al ARN , Semillas/citología , Semillas/genética , Zea mays/genética
18.
Haematologica ; 105(4): 925-936, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31467124

RESUMEN

Hematopoiesis is a finely regulated process in vertebrates under both homeostatic and stress conditions. By whole exome sequencing, we studied the genomics of acute lymphoblastic leukemia (ALL) patients who needed multiple red blood cell (RBC) transfusions after intensive chemotherapy treatment. ARHGEF12, encoding a RhoA guanine nucleotide exchange factor, was found to be associated with chemotherapy-induced anemia by genome-wide association study analyses. A single nucleotide polymorphism (SNP) of ARHGEF12 located in an intron predicted to be a GATA1 binding site, rs10892563, is significantly associated with patients who need RBC transfusion (P=3.469E-03, odds ratio 5.864). A luciferase reporter assay revealed that this SNP impairs GATA1-mediated trans-regulation of ARHGEF12, and quantitative polymerase chain reaction studies confirmed that the homozygotes status is associated with an approximately 61% reduction in ARHGEF12 expression (P=0.0088). Consequently, erythropoiesis was affected at the pro-erythroblast phases. The role of ARHGEF12 and its homologs in erythroid differentiation was confirmed in human K562 cells, mouse 32D cells and primary murine bone marrow cells. We further demonstrated in zebrafish by morpholino-mediated knockdown and CRISPR/Cas9-mediated knockout of arhgef12 that its reduction resulted in erythropoiesis defects. The p38 kinase pathway was affected by the ARHGEF12-RhoA signaling in K562 cells, and consistently, the Arhgef12-RhoA-p38 pathway was also shown to be important for erythroid differentiation in zebrafish as active RhoA or p38 readily rescued the impaired erythropoiesis caused by arhgef12 knockdown. Finally, ARHGEF12-mediated p38 activity also appeared to be involved in phenotypes of patients of the rs10892563 homozygous genotype. Our findings present a novel SNP of ARHGEF12 that may involve ARHGEF12-RhoA-p38 signaling in erythroid regeneration in ALL patients after chemotherapy.


Asunto(s)
Eritropoyesis , Leucemia-Linfoma Linfoblástico de Células Precursoras , Factores de Intercambio de Guanina Nucleótido Rho , Animales , Diferenciación Celular , Eritropoyesis/genética , Estudio de Asociación del Genoma Completo , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Pez Cebra
19.
Alcohol Clin Exp Res ; 44(11): 2187-2199, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32981093

RESUMEN

BACKGROUND: Alcohol use in pregnancy increases the risk of abnormal cardiac development, and excessive alcohol consumption in adults can induce cardiomyopathy, contractile dysfunction, and arrhythmias. Understanding molecular mechanisms underlying alcohol-induced cardiac toxicity could provide guidance in the development of therapeutic strategies. METHODS: We have performed proteomic and bioinformatic analysis to examine protein alterations globally and quantitatively in cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) treated with ethanol (EtOH). Proteins in both cell lysates and extracellular culture media were systematically quantitated. RESULTS: Treatment with EtOH caused severe detrimental effects on hiPSC-CMs as indicated by significant cell death and deranged Ca2+ handling. Treatment of hiPSC-CMs with EtOH significantly affected proteins responsible for stress response (e.g., GPX1 and HSPs), ion channel-related proteins (e.g. ATP1A2), myofibril structure proteins (e.g., MYL2/3), and those involved in focal adhesion and extracellular matrix (e.g., ILK and PXN). Proteins involved in the TNF receptor-associated factor 2 signaling (e.g., CPNE1 and TNIK) were also affected by EtOH treatment. CONCLUSIONS: The observed changes in protein expression highlight the involvement of oxidative stress and dysregulation of Ca2+ handling and contraction while also implicating potential novel targets in alcohol-induced cardiotoxicity. These findings facilitate further exploration of potential mechanisms, discovery of novel biomarkers, and development of targeted therapeutics against EtOH-induced cardiotoxicity.


Asunto(s)
Calcio/metabolismo , Cardiotoxicidad/metabolismo , Etanol/efectos adversos , Proteómica , Transducción de Señal/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteómica/métodos , Estrés Fisiológico/efectos de los fármacos
20.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32516991

RESUMEN

Pentatricopeptide repeat (PPR) protein comprises a large family, participating in various aspects of organellar RNA metabolism in land plants. There are approximately 600 PPR proteins in maize, but the functions of many PPR proteins remain unknown. In this study, we defined the function of PPR18 in the cis-splicing of nad4 intron 1 in mitochondria and seed development in maize. Loss function of PPR18 seriously impairs embryo and endosperm development, resulting in the empty pericarp (emp) phenotype in maize. PPR18 encodes a mitochondrion-targeted P-type PPR protein with 18 PPR motifs. Transcripts analysis indicated that the splicing of nad4 intron 1 is impaired in the ppr18 mutant, resulting in the absence of nad4 transcript, leading to severely reduced assembly and activity of mitochondrial complex I and dramatically reduced respiration rate. These results demonstrate that PPR18 is required for the cis-splicing of nad4 intron 1 in mitochondria, and critical to complex I assembly and seed development in maize.


Asunto(s)
Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Desarrollo de la Planta/genética , Empalme del ARN , Semillas/fisiología , Zea mays/fisiología , Secuencia de Aminoácidos , Respiración de la Célula , Intrones , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Modelos Moleculares , Fenotipo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA