Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Dairy Sci ; 106(3): 1576-1585, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36631321

RESUMEN

Green hydrophobically modified butyrylated dextrin (BD) was used to modulate casein (CN). The CN/BD complex nanoparticles were formed at different CN-to-BD mass ratios based on a pH-driven technology. The interaction force, stability, and emulsifying properties of complex nanoparticles were investigated. The nanoparticles had a negative charge and a small particle size (160.03, 152.6, 155.9, 206.13, and 231.67 nm) as well as excellent thermal stability and environmental stability (pH 4.5, 5.5, 6.6, 7.5, 8.5, and 9.5; ionic strength, 50, 100, 200, and 500 mM). Transmission electron microscopy demonstrated the successful preparation of complex nanoparticles and their spherical shape. Fourier transform infrared spectroscopy, fluorescence spectroscopy, and dissociation analysis results showed that the main driving forces of formed CN/BD nanoparticles were hydrogen bonding and hydrophobic interaction. Furthermore, the CN/BD nanoparticles (CN/BD mass ratio, 1:1; weight/weight) exhibited the lowest creaming index, and optical microscopy showed that it has the most evenly dispersed droplets after 7 d of storage, which indicates that the CN/BD nanoparticles had excellent emulsifying properties. Butyrylated dextrin forms complex nanoparticles with CN through hydrogen bonding and hydrophobic interaction to endow CN with superior properties. The results showed that it is possible to use pH-driven technology to form protein-polysaccharide complex nanoparticles, which provides some information on the development of novel food emulsifiers based on protein-polysaccharide nanoparticles. The study provided significant information on the improvement of CN properties and the development of emulsions based on CN.


Asunto(s)
Caseínas , Nanopartículas , Animales , Caseínas/química , Dextrinas , Emulsionantes , Emulsiones/química , Polisacáridos , Nanopartículas/química , Tamaño de la Partícula
2.
J Sci Food Agric ; 100(13): 4734-4744, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32458440

RESUMEN

BACKGROUND: Presently, identifying natural compounds as emulsifiers is a popular topic in the food industry. Rapeseed protein isolate (RPI) is a natural plant protein with excellent emulsifying properties, but it has not been systematically developed and utilized. RESULTS: This study investigated the surface hydrophobicity, wettability, and protein solubility of RPI to further explain its emulsifying behavior in emulsion systems. Nanoemulsions stabilized by RPI at varying protein concentration, pH, and ionic strength were prepared. The size distribution, zeta potential, flocculation index, creaming index, microstructure, rheology, and protein secondary structure of emulsions were measured. The emulsion stabilized by 20 g L-1 RPI at pH 10.0, 200 mmol L-1 ionic strength revealed an appropriate droplet size of 555 nm and the most internal gel strength without creaming phenomenon. Circular dichroism spectroscopy showed a positive correlation between emulsion stability and α-helix ratio, indicating the environment factors affected emulsion stability by acting on its hydrogen bonds. CONCLUSIONS: This study demonstrates that RPI is a practical emulsifier for stabilizing nanoemulsions. About 20 g L-1 RPI can stabilize 100 mL L-1 oil in water; stable emulsions can be formed at most pH conditions (except 7.0); ion addition will aggravate the emulsion flocculation, but also increase the internal gel strength. © 2020 Society of Chemical Industry.


Asunto(s)
Brassica napus/química , Emulsionantes/química , Proteínas de Plantas/química , Emulsionantes/aislamiento & purificación , Emulsiones/química , Geles/química , Concentración de Iones de Hidrógeno , Aceites/química , Concentración Osmolar , Proteínas de Plantas/aislamiento & purificación , Conformación Proteica , Reología , Solubilidad , Agua/química
3.
Food Chem ; 460(Pt 1): 140386, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029367

RESUMEN

In promoting healthy diet, developing animal fat substitutes for meat products has been a prominent trend in food science. In this study, Prinsepia utilis Royle protein (PuRP) with amphiphilic property was extracted from waste oil pomace. High internal phase emulsions (HIPEs) were prepared with a 75% oil phase and stabilized with 2% (w/v) PuRP due to their excellent elastic-gel property. Furthermore, the PuRP-HIPEs were used to substitute animal fat in low-fat meatballs. Below 100 mM ionic strength, the uniformly distributed PuRP-HIPEs exhibited an approximate Gaussian size distribution with an average particle size of about 100 µm. The PuRP-HIPEs exhibited good thermodynamic stability and improved the texture of meatballs. Additionally, the PuRP-HIPEs significantly increased the mobile water content in steamed meatballs, resulting in better water retention and distribution than the free-fat and lard-added meatballs. Overall, the PuRP-HIPEs could substitute 100% animal fat in meatballs and maintain their cooking characteristics.


Asunto(s)
Emulsiones , Sustitutos de Grasa , Productos de la Carne , Emulsiones/química , Animales , Productos de la Carne/análisis , Sustitutos de Grasa/química , Sustitutos de Grasa/análisis , Tamaño de la Partícula , Culinaria , Proteínas de Plantas/química , Escarabajos/química
4.
Food Funct ; 15(13): 7124-7135, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38881239

RESUMEN

Alcoholic liver injury has become a leading threat to human health, with complicated pathogenesis and limited therapeutic options. Our previous study showed that Musculus senhousei peptides (MSPs) exhibit protective potential against early-stage alcoholic liver injury, although the underlying mechanism is not yet clear. In this study, histopathological analysis, mRNA abundance of injury-associated biomarkers, the gut microbiota, and faecal metabolome were evaluated using a mouse model subjected to acute alcohol exposure, aiming to identify the mechanism by which MSP can alleviate alcoholic hepatotoxicity. The results showed that MSP intervention significantly ameliorated symptoms of liver injury (suppressed serum ALT increment, hepatic lipid accumulation, and neutrophil infiltration in liver tissue), and reversed the abnormal mRNA abundance of biomarkers associated with oxidative stress (iNOS), inflammation (TNF-α, IL-1ß, MCP-1, TNF-R1, and TLR4), and apoptosis (Bax and Casp. 3) in the liver. Moreover, MSP improved intestinal barrier function by increasing the expression of tight junction proteins (Claudin-1 and Claudin-3). Further analysis of faecal microbiota and metabolome revealed that MSP promoted the growth of tryptophan-metabolizing bacteria (Clostridiales, Alistipes, and Odoribacter), leading to increased production of indole derivatives (indole-3-lactic acid and N-acetyltryptophan). These results suggested that MSPs may alleviate alcohol-induced liver injury targeting the gut-liver axis, and could be an effective option for the prevention of alcoholic liver injury.


Asunto(s)
Microbioma Gastrointestinal , Hepatopatías Alcohólicas , Hígado , Ratones Endogámicos C57BL , Animales , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Péptidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad
5.
Food Chem ; 441: 138287, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38218141

RESUMEN

While calpain's role in myofibrillar protein degradation is well-established, its impact on post-mortem apoptosis remains fully elucidated. This study aimed to examine how calpain influences the mitochondrial apoptotic pathway in post-mortem muscle cells and assess its potential impact on chicken tenderness. The findings indicate that the calpain inhibitor treatment could decelerate the rate of lysosome destruction in post-mortem chicken, which is a crucial factor in delaying the mitochondrial apoptotic pathway. Subsequently, this inhibition enhanced the mitochondrial membrane's stability and suppressed the apoptosis-inducing factor Cyt c release into the sarcoplasm. The Western blot results in a greater myofibrillar protein degradation degree in the caspase inhibitor samples compared to the calpain inhibitor samples. Interestingly, the two groups had no significant difference in shear force. Based on these reasons, a novel perspective was introduced in this paper: Calpain could affect the change in meat tenderness by regulating mitochondrial apoptosis in the post-mortem period.


Asunto(s)
Calpaína , Carne , Animales , Calpaína/metabolismo , Proteolisis , Carne/análisis , Apoptosis , Pollos/metabolismo , Cambios Post Mortem
6.
Int J Biol Macromol ; 265(Pt 1): 130713, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471612

RESUMEN

Rapeseed-derived peptides (RPPs) can maintain the homeostasis of human blood glucose by inhibiting Dipeptidyl Peptidase-IV (DPP-IV) and activating the calcium-sensing receptor (CaSR). However, these peptides are susceptible to hydrolysis in the gastrointestinal tract. To enhance the therapeutic potential of these peptides, we developed a chitosan/sodium alginate-based nanocarrier to encapsulate two RPP variants, rapeseed-derived cruciferin peptide (RCPP) and rapeseed-derived napin peptide (RNPP). A convenient three-channel device was employed to prepare chitosan (CS)/sodium alginate (ALG)-RPPs nanoparticles (CS/ALG-RPPs) at a ratio of 1:3:1 for CS, ALG, and RPPs. CS/ALG-RPPs possessed optimal encapsulation efficiencies of 90.7 % (CS/ALG-RNPP) and 91.4 % (CS/ALG-RCPP), with loading capacities of 15.38 % (CS/ALG-RNPP) and 16.63 % (CS/ALG-RCPP) at the specified ratios. The electrostatic association between CS and ALG was corroborated by zeta potential and near infrared analysis. 13C NMR analysis verified successful RPPs loading, with CS/ALG-RNPP displaying superior stability. Pharmacokinetics showed that both nanoparticles were sustained release and transported irregularly (0.43 < n < 0.85). Compared with the control group, CS/ALG-RPPs exhibited significantly increased glucose tolerance, serum GLP-1 (Glucagon-like peptide 1) content, and CaSR expression which play pivotal roles in glucose homeostasis (*p < 0.05). These findings proposed that CS/ALG-RPPs hold promise in achieving sustained release within the intestinal epithelium, thereby augmenting the therapeutic efficacy of targeted peptides.


Asunto(s)
Brassica napus , Quitosano , Nanopartículas , Humanos , Quitosano/química , Portadores de Fármacos/química , Preparaciones de Acción Retardada , Brassica napus/metabolismo , Alginatos/química , Nanopartículas/química , Glucosa , Péptidos
7.
J Agric Food Chem ; 71(22): 8437-8447, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37221879

RESUMEN

This study aimed to investigate the anti-inflammatory molecular activity of rapeseed napin-derived dipeptide Thr-Leu (TL) using Caco-2/RAW264.7 cell cocultures. This in vitro coculture intestinal inflammation model was used to assess the absorption, evolution, and anti-inflammatory effects of peptides. TL was absorbed by the intestinal epithelial cells with an apparent permeability of (2.48 ± 0.18) × 10-6 cm/s, primarily through the PepT1 pathway. TL treatment exerted anti-inflammatory and restorative effects on the impaired intestinal barrier function by enhancing the expression levels of occludin and ZO-1 in lipopolysaccharide (LPS)-induced Caco-2 cells. No significant change (P < 0.05) was detected in claudin-1 expression levels; however, the occludin expression levels were upregulated through the protein kinase C (PKC) signaling pathway. Compared with the LPS-induced group, TL (2.0 mM) reduced the levels of intracellular inflammation-related enzymes (iNOS: by 50.84%; COX-2: by 49.64%) on the coculture cell model. In addition, the interleukin (IL)-1ß, IL-6, and TNF-α levels in RAW264.7 cells were significantly (P < 0.05) downregulated following TL treatment (2.0 mM) due to the suppression of the phosphorylation of the JNK-independent pathway on the basolateral side of the coculture cell model. These findings highlight the potential use of TL in functional foods or nutraceuticals to prevent intestinal inflammation.


Asunto(s)
Brassica napus , Humanos , Células CACO-2 , Brassica napus/metabolismo , Técnicas de Cocultivo , Lipopolisacáridos/farmacología , Ocludina/metabolismo , Dipéptidos/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Inflamación/metabolismo , Mucosa Intestinal/metabolismo
8.
Food Chem ; 428: 136751, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37453392

RESUMEN

The Leuconostoc mesenteroides subsp. IMAU:80679 (LM) was chosen for its superior capability in enhancing redness, and was incubated in a broth system containing metmyoglobin (MetMb) to investigate its mechanisms for color improvement. The a* value of LM group reached its highest level of 52.75 ± 1.04 at 24 h, significantly higher than control of 19.75 ± 0.6 (p < 0.05). The addition of LM could inhibit myoglobin oxidation to some extent. Meanwhile, higher content of nitrosylmyoglobin (NOMb) and Zn-protoporphyrin (Znpp) were observed in LM samples during the whole incubation period. Furthermore, enzymatic activity and encoded genes related to MetMb reduction and pigment formation were determined to explain its possible mechanism on color enhancement. Finally, by extracting crude enzymes and adding them to meat batters, the redness of crude enzyme group was comparable to that achieved with 20 ppm nitrite, providing a potential method on compensating for nitrite/nitrate substitution in meat products.


Asunto(s)
Leuconostoc mesenteroides , Mioglobina , Mioglobina/metabolismo , Leuconostoc mesenteroides/genética , Leuconostoc mesenteroides/metabolismo , Nitritos , Carne , Metamioglobina , Oxidación-Reducción , Color
9.
J Agric Food Chem ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921432

RESUMEN

This study aimed to effectively identify anti-inflammatory peptides in Jinhua ham, a dry-cured meat product made from the hind legs of pigs by curing and fermenting processes, and elucidate their anti-inflammatory mechanism. The investigation involved a combination of chromatographic purification, in silico screening, and in vitro validation. The first peak of JHP (JHP-P1) was purified using two-part exchange chromatography, in which 3350 peptides were identified by nano-HPLC-MS/MS, among which QLEELKR and EAEERADIAESQVNKLR showed significant anti-inflammatory potential (prediction scores: 0.759 and 0.841). In molecular docking and in vitro RAW264.7 cell experiments, these peptides displayed a strong affinity for Toll-like receptor 4-myeloid differentiation-2 (TLR4-MD-2), specifically binding around Arg 380, Lys 475, His 401, Gln 423, Asp 426, etc. This binding inhibited TLR4 expression and prevented trimer formation about TLR4-MD-2 and lipopolysaccharide (LPS), strongly inhibiting the inflammatory cascade. JHP suppressed LPS-induced cytokine overproduction and partially inhibited the phosphorylation of proteins in the MAPK/NF-κB pathway. These results demonstrated that combining in silico methods (activity prediction and molecular docking) is an effective strategy for screening anti-inflammatory peptides. This study provided a theoretical basis for identifying more anti-inflammatory peptides and applying them in functional foods.

10.
Food Res Int ; 173(Pt 2): 113391, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803728

RESUMEN

The aim of this study was to investigate the effects and mechanism of in vitro protein digestive products of Xuanwei ham with different ripening periods on cholesterol metabolism and hypercholesterolemia. The results showed that compared with other gastrointestinal digestion (GID) groups, the GID group of Xuanwei ham with 3-year ripening period (XWH3-GID) inhibited the expression of Niemann-Pick C1-like 1 (NPC1L1) and acetyl-CoA acetyltransferase 2 (ACAT2) through hepatocyte nuclear factor 1-alpha (HNF-1α), which in turn effectively inhibited cholesterol absorption in Caco-2 cell monolayers. Following absorption by Caco-2 cell monolayers, the XWH3-GID group suppressed the expression and secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) via HNF-1α, which enhanced the protein expression and fluorescence intensity of low density lipoprotein receptor (LDLR) on the HepG2 cell membrane, and thus promoted the uptake of low density lipoprotein (LDL). Importantly, three novel peptides (LFP, PKF and VPFP) derived from titin were identified after intestinal epithelial transport in the XWH3-GID group, which could exert cholesterol-lowering effects through inhibiting intestinal cholesterol absorption and promoting peripheral hepatic LDL uptake, and effectively ameliorate western diet-induced hypercholesterolemia in ApoE-/- mice. These results suggest that Xuanwei ham with 3-year ripening period can be used as a source of cholesterol-lowering peptides and has potential to intervene in hypercholesterolemia.


Asunto(s)
Hipercolesterolemia , Proproteína Convertasa 9 , Humanos , Ratones , Animales , Proproteína Convertasa 9/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Células CACO-2 , Colesterol/metabolismo , Péptidos
11.
Food Res Int ; 174(Pt 1): 113500, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986415

RESUMEN

The colour of meat typically fades as it decays. However, it has been observed that certain vacuum-packaged spoiled hams can maintain a pink colour even when the packaging is bulged. A large amount of Zinc protoporphyrin IX (ZnPP) was found in these hams, compared to fresh red hams or spoiled and grey hams. Combined with high-throughput sequencing and cultural isolation, the potential cultures of Leuconostoc mesenteroides S-13 (LM), Leuconostoc citreum OCLC11 (LC), and Leuconostoc mesenteroides subsp. IMAU:80679 (LS) were selected based on their ability to produce ZnPP. Subsequently, these cultures were introduced into a fermented sausage model to assess their effect on colour conversion. The analysis of absorption and fluorescent spectra showed that Nitrite sausages contained nitrosyl heme pigment, while bacteria-inoculated sausages were predominantly composed of ZnPP. In addition, the a* value of the LS sausage was close to the Nitrite group at the end of fermentation, significantly higher than control, indicating the effect of bacterial metabolism on the redness. Meanwhile, the Ferrochelatase (FECH) activity of LM, LC and LS groups were 140 ± 13, 113 ± 16 and 201 ± 20 U/g sausage, respectively, providing a potential method on compensating for nitrite/nitrate substitution based on the presence of ZnPP in meat products.


Asunto(s)
Leuconostoc mesenteroides , Carne de Cerdo , Nitritos , Vacio , Leuconostoc
12.
Food Res Int ; 164: 112382, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36737967

RESUMEN

The by-product of Chinese rubing cheese is rich in whey protein. Whey hydrolysates exhibit good hypoglycemic activity, but which specific peptide components are responsible for this effect have not yet been investigated. Herein, the α-glucosidase inhibitory activity of the ultrafiltered fraction (<3 kDa) of rubing cheese whey hydrolysates was evaluated with the inhibition rate of 37.89 %. In addition, peptide identification was conducted using LC-MS/MS, and three peptides YPVEPF, VPYPQ, and LPYPY were identified. Among these, YPVEPF had higher α-glucosidase inhibitory activity (IC50 = 3.52 mg/mL) and interacted with α-glucosidase via hydrogen bonding and hydrophobic forces. YPVEPF was characterized as an amphipathic peptide rich in antiparallel (50.50 %) and random coil (35.20 %) structures, as well as showed good tolerance to gastrointestinal digestion and incubation under the temperature range of 20-80 °C. Notably, YPVEPF activity increased in the presence of Al3+ and Fe3+, as well as within the pH range of 2.0-6.0. Furthermore, YPVEPF had negligible hemolytic activity at a concentration of 1.0 mg/mL, no toxicity at concentrations below 0.5 mg/mL, and significantly promoted glucose consumption in HepG2 cells (p < 0.0001). Collectively, these findings indicate the potential of YPVEPF to be used as a novel hypoglycemic peptide in functional foods.


Asunto(s)
Queso , Suero Lácteo , Proteína de Suero de Leche/química , Suero Lácteo/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/análisis , alfa-Glucosidasas/metabolismo , Queso/análisis , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos/química
13.
Food Chem ; 428: 136786, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429235

RESUMEN

This study investigated the impact of low-voltage electrostatic field-assisted freezing on the water-holding capacity of beef steaks. The enhances mechanism of water-holding capacity by electrostatic field was elucidated through the detection of dynamic changes in the myofilament lattice and the construction of an in vitro myosin filaments model. The findings demonstrated that the disorder of the myofilament array, resulted from the aggregation of myosin filaments during freezing, is a crucial factor responsible for the water loss. The intervention of the electrostatic field can effectively reduce the myofibril density by 18.7%, while maintaining a regular lattice array by modulating electrostatic and hydrophobic interactions between myofibrils. Moreover, the electrostatic field significantly inhibited the migration of immobilized water to free water, thus resulting in an increase in the water-holding capacity of myofibrils by 36%. This work provides insights into the underlying mechanisms of water loss in frozen steaks and its regulation.


Asunto(s)
Miofibrillas , Agua , Animales , Bovinos , Miofibrillas/química , Congelación , Agua/análisis , Electricidad Estática , Miosinas/química
14.
Food Res Int ; 171: 112985, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37330841

RESUMEN

This study aims to elucidate the mechanism behind the deterioration in the gel properties of collagen gel resulting from high-temperature treatment. The results show that the high level of triple-helix junction zones and related lateral stacking contribute to the dense and orderly collagen gel network with high gel strength and storage modulus. The analysis of the molecular properties of heated collagen shows that high-temperature treatment leads to serious denaturation and degradation of collagen, resulting in the formation of gel precursor solutions composed of low-molecular-weight peptides. The short chains in the precursor solution are not easy to nucleation and can limit the growth of triple-helix cores. To conclude, the decrease in triple-helix renaturation and crystallization abilities of peptide components is the reason for the deterioration in the gel properties of collagen gel induced by high temperature. The findings presented in this study add the understanding of texture deterioration in high-temperature processed collagen-based meat products and related products, and provide a theoretical basis for establishing methods to overcome the production dilemma faced by these products.


Asunto(s)
Colágeno , Calor , Temperatura , Colágeno/química , Péptidos/química , Peso Molecular
15.
Food Res Int ; 155: 111095, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35400467

RESUMEN

The pathological characteristics of alcohol-associated liver damage (ALD) mainly include liver lipid accumulation, which subsequently leads to alcohol-associated steatohepatitis, fibrosis and cirrhosis. Dietary factors such as alcohol and fat may contribute to the development of ALD. A chronic alcohol-fed mouse model was used to investigate the effect of fatty acids in Jinhua ham on ALD. The fatty acids in Jinhua ham could prevent the occurrence of ALD from chronic alcohol consumption. In addition, the fatty acids in Jinhua ham with liver protective activity were long-chain saturated fatty acids (LCSFAs), including palmitic acid and stearic acid. In contrast, long-chain polyunsaturated fatty acids aggravated the pathogenesis of ALD. Furthermore, the mechanism underlying the prevention of ALD by fatty acids in Jinhua ham was ascribed to increasing relative abundances of Akkermansia muciniphila and Lactobacillus in the gut, which were beneficial to regulating intestinal homeostasis, ameliorating intestinal barrier dysfunction and reducing alcohol-associated hepatitis and oxidative stress damage. This study demonstrated that dietary supplementation with saturated fatty acids could prevent or mitigate ALD by regulating the gut microbiota (GM) and improving the intestinal barrier, while provided a more affordable dietary intervention strategy for the prevention of ALD.


Asunto(s)
Hígado Graso Alcohólico , Microbioma Gastrointestinal , Hepatopatías Alcohólicas , Animales , Etanol/efectos adversos , Ácidos Grasos/farmacología , Hígado Graso Alcohólico/prevención & control , Hepatopatías Alcohólicas/prevención & control , Ratones , Ratones Endogámicos C57BL , Ácidos Esteáricos/farmacología
16.
Food Res Int ; 155: 111101, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35400474

RESUMEN

Rapeseed napin (Brassica napus) protein-derived hydrolysates (RNPHs, 1-4) are mixtures of peptides, prior to reaching liver tissue and playing their antidiabetic role, at least being absorbed and metabolized by the intestinal barrier. The study aims at screening and identifying high bioavailable rapessed napin-derived oligopeptides via simulated gastrointestinal digestion and absorption. Specifically, RNPHs were obtained using a novel ultrasound-assisted digestive device. The potential capacity of treating type 2 diabetes mellitus (T2DM) was evaluated preliminarily via enhancing glucose transporter 4 (GLUT4) expression and translocation. Also, absorbable rapeseed napin-derived oligopeptides were screened and identified in a Caco-2/HepG2 co-culture model using liquid chromatography coupled with electrospray ionisation and quadrupole time of flight tandem mass spectrometry (LC-ESI-QTOF-MS). The results involved mainly two aspects. First, absorbable oligopeptides from RNPH-1 (Molecular weight, Mw ≤ 3 kDa) with the highest degree of hydrolysis (DH) were the optimal ones to enhance GLUT4 expression and translocation (P < 0.05). Secondly, oligopeptides (Thr-His-Leu-Pro-Lys (THLPK), His-Leu-Pro-Lys (HLPK), (Ile) Leu-Pro-Lys ((I)LPK), His-Leu-Lys (HLK), and Leu-His-Lys (LHK)), identified from both RNPH-1 and RNPH-2 which significantly enhanced GLUT4 expression and translocation, could be absorbed intact and reached HepG2 cells. These findings indicated that high bioavailable oligopeptides from RNPHs were the potential usefulness to treat T2DM in vitro.


Asunto(s)
Brassica napus , Brassica rapa , Diabetes Mellitus Tipo 2 , Células CACO-2 , Técnicas de Cocultivo , Humanos , Oligopéptidos/química , Hidrolisados de Proteína/química , Espectrometría de Masas en Tándem
17.
Food Funct ; 13(9): 5215-5228, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35438092

RESUMEN

The potential of pentapeptide IPQVS (RAP1) and octapeptide ELHQEEPL (RAP2) derived from rapeseed napin as natural dipeptidyl-peptidase IV (DPP-IV) inhibitors is promising. The objective was to develop a nanogel strategy to resist the hydrolysis of digestive and intestinal enzymes to enhance the DPP-IV inhibitory activity of RAP1 and RAP2, and stimulate glucagon-like peptide 1 (GLP-1) secretion of RAP2 by a RADA16-assisted molecular design. The linker of double Gly was used in the connection of RADA16 and the functional oligopeptide region (RAP1 and RAP2). Compared to the original oligopeptides, DPP-IV IC50 of the nanogels RADA16-RAP1 and RADA16-RAP2 decreased by 26.43% and 17.46% in Caco-2 cell monolayers, respectively. The results showed that the two nanogel peptides with no toxicity to cells had higher contents of stable ß-sheet structures (increased by 5.6-fold and 5.2-fold, respectively) than the original oligopeptides, and a self-assembled fibrous morphology. Rheological results suggested that the nanogels RADA16-RAP1 and RADA16-RAP2 exhibit good rheological properties for potential injectable applications; the storage modulus (G') was 10 times higher than the low modulus (G''). Furthermore, the RAP2 and its RADA16-assisted nanogel peptide at the concentration of 250 µM significantly (P < 0.05) increased the release of GLP-1 by 35.46% through the calcium-sensing receptor pathway in the enteroendocrine STC-1 cells. Hence, the innovative and harmless nanogels with the sequence of RADA16-GG-Xn have the potential for use by oral and injection administration for treating or relieving type 2 diabetes.


Asunto(s)
Brassica napus , Brassica rapa , Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Células CACO-2 , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Nanogeles , Péptidos/química , Péptidos/farmacología
18.
Food Funct ; 13(6): 3481-3494, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35246675

RESUMEN

Moringa oleifera seed protein hydrolysates exhibit good hypoglycemic activity, but their specific peptide components have not yet been characterized. Here, we identified the ultrafiltration peptide components (<3 kDa) of M. oleifera seed protein hydrolysates. A highly active α-glucosidase inhibitory peptide with an IC50 value of 109.65 µM (MoHpP-2) with the amino acid sequence KETTTIVR was identified. We characterized its structural properties, stability, and hypoglycemic activity. MoHpP-2 was found to be an amphipathic peptide with a ß-turn structure, and the hemolysis of red blood cells was not observed when its concentration was lower than 2 mg mL-1. MoHpP-2 was stable under weakly acidic conditions, at temperatures lower than 60 °C, and at high ion concentrations. Western blotting revealed that MoHpP-2 affected the PI3K and AMPK pathways of HepG2 cells. Molecular docking revealed that MoHpP-2 interacted with α-glucosidase through hydrogen bonding and hydrophobic forces. Thus, MoHpP-2 from M. oleifera seeds could be used to make hypoglycemic functional foods.


Asunto(s)
Moringa oleifera , Hipoglucemiantes/análisis , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , Moringa oleifera/química , Péptidos/análisis , Péptidos/farmacología , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Hidrolisados de Proteína/farmacología , Semillas/química
19.
J Agric Food Chem ; 70(39): 12418-12429, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36129441

RESUMEN

Oligopeptides (Thr-His-Leu-Pro-Lys (THLPK), His-Pro-Leu-Lys (HPLK), Leu-Pro-Lys (LPK), His-Leu-Lys (HLK), and Leu-His-Lys (LHK)) are newly identified from rapeseed napin (Brassica napus) protein-derived hydrolysates with the capability of upregulating glucose transporter-4 (GLUT4) expression and translocation. However, whether each of them enhances GLUT4 expression and translocation and their specific mechanisms remain unclear. Here, we assess the effects of the oligopeptides against insulin resistance (IR) and oxidative stress in hepatocytes and screen out the most antidiabetic one. Specifically, compared with other oligopeptides, LPK not only remarkably elevated glucose consumption to 8.45 mmol/L protein; superoxide dismutase (SOD) activity to 319 U/mg protein; GLUT4 expression and translocation; and phosphorylated level of insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) (P < 0.05) but also remarkably attenuated the reactive oxygen species (ROS) level to 2255, lactate dehydrogenase (LDH) activity to 20.5 U/mg protein, malondialdehyde (MDA) content to 241 nmol/mg protein, and NO content to 1302 µmol/mL protein (P < 0.05). These findings demonstrated that antidiabetic oligopeptide LPK possessed the most potential to protect HepG2 cells from IR and oxidative stress via activating IRS-1/PI3K/Akt/GLUT4 and regulating common oxidative markers in vitro.


Asunto(s)
Brassica napus , Resistencia a la Insulina , Brassica napus/genética , Brassica napus/metabolismo , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Células Hep G2 , Humanos , Hipoglucemiantes , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Lactato Deshidrogenasas/metabolismo , Malondialdehído , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Estrés Oxidativo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
20.
Food Chem ; 374: 131636, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-34875432

RESUMEN

To optimize the extraction of polysaccharides from coix seeds (CSP), an auxiliary method of ultrasound was developed by response surface methodology (RSM). The maximum extraction yield (8.340%) was obtained under 480 W power, 16 min ultrasound extraction (UE) time and 21.00 mL/g water to raw material ratio. Compared to hot water extraction (HE), UE-treated CSP led to a higher extraction efficiency and decreased average CSP molecular weight. FT-IR indicated that CSP extracted by UE and HE were neutral polysaccharides, and linkages between sugar units were mainly in the α-conformation. Furthermore, NMR spectra indicated that UE-treated CSP was a neutral polysaccharide with (1 â†’ 6)-linked α-d-glucopyranose in the main chain. Two polysaccharide components (CSP-A and CSP-B) were purified by anion exchange chromatography, therein, CSP-A was more resistant to the digestion in stomach and intestine. These results suggest that CSP-A has the potential to be a functional agent utilized by gut microbes.


Asunto(s)
Coix , Antioxidantes , Peso Molecular , Polisacáridos , Espectroscopía Infrarroja por Transformada de Fourier , Ultrasonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA