Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
FASEB J ; 35(10): e21865, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34486178

RESUMEN

Autosomal dominant polycystic kidney disease is a common inherited renal disorder that results from mutations in either PKD1 or PKD2, encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Downregulation or overexpression of PKD1 or PKD2 in mouse models results in renal cyst formation, suggesting that the quantity of PC1 and PC2 needs to be maintained within a tight functional window to prevent cystogenesis. Here we show that enhanced PC2 expression is a common feature of PKD1 mutant tissues, in part due to an increase in Pkd2 mRNA. However, our data also suggest that more effective protein folding contributes to the augmented levels of PC2. We demonstrate that the unfolded protein response is activated in Pkd1 knockout kidneys and in Pkd1 mutant cells and that this is coupled with increased levels of GRP94, an endoplasmic reticulum protein that is a member of the HSP90 family of chaperones. GRP94 was found to physically interact with PC2 and depletion or chemical inhibition of GRP94 led to a decrease in PC2, suggesting that GRP94 serves as its chaperone. Moreover, GRP94 is acetylated and binds to histone deacetylase 6 (HDAC6), a known deacetylase and activator of HSP90 proteins. Inhibition of HDAC6 decreased PC2 suggesting that HDAC6 and GRP94 work together to regulate PC2 levels. Lastly, we showed that inhibition of GRP94 prevents cAMP-induced cyst formation in vitro. Taken together our data uncovered a novel HDAC6-GRP94-related axis that likely participates in maintaining elevated PC2 levels in Pkd1 mutant cells.


Asunto(s)
Quistes/patología , Retículo Endoplásmico/metabolismo , Enfermedades Renales/patología , Glicoproteínas de Membrana/metabolismo , Factor de Transcripción PAX8/fisiología , Canales Catiónicos TRPP/fisiología , Animales , Calcio/metabolismo , Quistes/etiología , Quistes/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Respuesta de Proteína Desplegada
2.
Kidney Int ; 92(5): 1130-1144, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28729032

RESUMEN

Autosomal recessive polycystic kidney disease (OMIM 263200) is a serious condition of the kidney and liver caused by mutations in a single gene, PKHD1. This gene encodes fibrocystin/polyductin (FPC, PD1), a large protein shown by in vitro studies to undergo Notch-like processing. Its cytoplasmic tail, reported to include a ciliary targeting sequence, a nuclear localization signal, and a polycystin-2 binding domain, is thought to traffic to the nucleus after cleavage. We now report a novel mouse line with a triple HA-epitope "knocked-in" to the C-terminus along with lox P sites flanking exon 67, which encodes most of the C-terminus (Pkhd1Flox67HA). The triple HA-epitope has no functional effect as assayed by phenotype and allows in vivo tracking of Fibrocystin. We used the HA tag to identify previously predicted Fibrocystin cleavage products in tissue. In addition, we found that Polycystin-2 fails to co-precipitate with Fibrocystin in kidney samples. Immunofluorescence studies with anti-HA antibodies demonstrate that Fibrocystin is primarily present in a sub-apical location the in kidney, biliary duct, and pancreatic ducts, partially overlapping with the Golgi. In contrast to previous studies, the endogenous protein in the primary cilia was not detectable in mouse tissues. After Cre-mediated deletion, homozygous Pkhd1Δ67 mice are completely normal. Thus, Pkhd1Flox67HA is a valid model to track Pkhd1-derived products containing the C-terminus. Significantly, exon 67 containing the nuclear localization signal and the polycystin-2 binding domain is not essential for Fibrocystin function in our model.


Asunto(s)
Riñón/metabolismo , Riñón Poliquístico Autosómico Recesivo/genética , Dominios Proteicos/genética , Receptores de Superficie Celular/genética , Canales Catiónicos TRPP/metabolismo , Animales , Cilios/metabolismo , Modelos Animales de Enfermedad , Epítopos/genética , Exones/genética , Femenino , Técnica del Anticuerpo Fluorescente , Técnicas de Sustitución del Gen , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Riñón/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Fragmentos de Péptidos/genética , Fenotipo , Riñón Poliquístico Autosómico Recesivo/metabolismo , Receptores de Superficie Celular/metabolismo
3.
J Am Soc Nephrol ; 25(1): 81-91, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24071006

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a common cause of renal failure that is due to mutations in two genes, PKD1 and PKD2. Vascular complications, including aneurysms, are a well recognized feature of ADPKD, and a subgroup of families exhibits traits reminiscent of Marfan syndrome (MFS). MFS is caused by mutations in fibrillin-1 (FBN1), which encodes an extracellular matrix protein with homology to latent TGF-ß binding proteins. It was recently demonstrated that fibrillin-1 deficiency is associated with upregulation of TGF-ß signaling. We investigated the overlap between ADPKD and MFS by breeding mice with targeted mutations in Pkd1 and Fbn1. Double heterozygotes displayed an exacerbation of the typical Fbn1 heterozygous aortic phenotype. We show that the basis of this genetic interaction results from further upregulation of TGF-ß signaling caused by Pkd1 haploinsufficiency. In addition, we demonstrate that loss of PKD1 alone is sufficient to induce a heightened responsiveness to TGF-ß. Our data link the interaction of two important diseases to a fundamental signaling pathway.


Asunto(s)
Proteínas de Microfilamentos/genética , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/genética , Factor de Crecimiento Transformador beta/metabolismo , Enfermedades Vasculares/genética , Enfermedades Vasculares/metabolismo , Animales , Modelos Animales de Enfermedad , Epistasis Genética , Femenino , Fibrilina-1 , Fibrilinas , Estudios de Asociación Genética , Haploinsuficiencia , Heterocigoto , Humanos , Masculino , Síndrome de Marfan/etiología , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Proteínas de Microfilamentos/deficiencia , Mutación , Riñón Poliquístico Autosómico Dominante/complicaciones , Transducción de Señal , Canales Catiónicos TRPP/deficiencia , Enfermedades Vasculares/etiología
4.
Nat Commun ; 14(1): 6513, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845212

RESUMEN

Fibrocystin/Polyductin (FPC), encoded by PKHD1, is associated with autosomal recessive polycystic kidney disease (ARPKD), yet its precise role in cystogenesis remains unclear. Here we show that FPC undergoes complex proteolytic processing in developing kidneys, generating three soluble C-terminal fragments (ICDs). Notably, ICD15, contains a novel mitochondrial targeting sequence at its N-terminus, facilitating its translocation into mitochondria. This enhances mitochondrial respiration in renal epithelial cells, partially restoring impaired mitochondrial function caused by FPC loss. FPC inactivation leads to abnormal ultrastructural morphology of mitochondria in kidney tubules without cyst formation. Moreover, FPC inactivation significantly exacerbates renal cystogenesis and triggers severe pancreatic cystogenesis in a Pkd1 mouse mutant Pkd1V/V in which cleavage of Pkd1-encoded Polycystin-1 at the GPCR Proteolysis Site is blocked. Deleting ICD15 enhances renal cystogenesis without inducing pancreatic cysts in Pkd1V/V mice. These findings reveal a direct link between FPC and a mitochondrial pathway through ICD15 cleavage, crucial for cystogenesis mechanisms.


Asunto(s)
Quiste Pancreático , Riñón Poliquístico Autosómico Recesivo , Ratones , Animales , Receptores de Superficie Celular/metabolismo , Riñón/metabolismo , Riñón Poliquístico Autosómico Recesivo/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Túbulos Renales/metabolismo
5.
Proc Natl Acad Sci U S A ; 104(47): 18688-93, 2007 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-18003909

RESUMEN

Polycystin-1 (PC1) has an essential function in renal tubular morphogenesis and disruption of its function causes cystogenesis in human autosomal dominant polycystic kidney disease. We have previously shown that recombinant human PC1 is cis-autoproteolytically cleaved at the G protein-coupled receptor proteolytic site domain. To investigate the role of cleavage in vivo, we generated by gene targeting a Pkd1 knockin mouse (Pkd1(V/V)) that expresses noncleavable PC1. The Pkd1(V/V) mice show a hypomorphic phenotype, characterized by a delayed onset and distal nephron segment involvement of cystogenesis at postnatal maturation stage. We show that PC1 is ubiquitously and incompletely cleaved in wild-type mice, so that uncleaved and cleaved PC1 molecules coexist. Our study establishes a critical but restricted role of cleavage for PC1 function and suggests a differential function of the two types of PC1 molecules in vivo.


Asunto(s)
Túbulos Renales/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canales Catiónicos TRPP/metabolismo , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Secuencia de Bases , Células Cultivadas , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Genotipo , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Ratones , Ratones Transgénicos , Receptores Acoplados a Proteínas G/genética
6.
Mol Cell Biol ; 34(17): 3341-53, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24958103

RESUMEN

Polycystin-1 (Pc1) cleavage at the G protein-coupled receptor (GPCR) proteolytic site (GPS) is required for normal kidney morphology in humans and mice. We found a complex pattern of endogenous Pc1 forms by GPS cleavage. GPS cleavage generates not only the heterodimeric cleaved full-length Pc1 (Pc1(cFL)) in which the N-terminal fragment (NTF) remains noncovalently associated with the C-terminal fragment (CTF) but also a novel (Pc1) form (Pc1(deN)) in which NTF becomes detached from CTF. Uncleaved Pc1 (Pc1(U)) resides primarily in the endoplasmic reticulum (ER), whereas both Pc1(cFL) and Pc1(deN) traffic through the secretory pathway in vivo. GPS cleavage is not a prerequisite, however, for Pc1 trafficking in vivo. Importantly, Pc1(deN) is predominantly found at the plasma membrane of renal epithelial cells. By functional genetic complementation with five Pkd1 mouse models, we discovered that CTF plays a crucial role in Pc1(deN) trafficking. Our studies support GPS cleavage as a critical regulatory mechanism of Pc1 biogenesis and trafficking for proper kidney development and homeostasis.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/metabolismo , Animales , Sitios de Unión , Transporte Biológico Activo , Membrana Celular/metabolismo , Prueba de Complementación Genética , Aparato de Golgi/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética
7.
Nat Commun ; 5: 5482, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25405894

RESUMEN

Primary cilia contain specific receptors and channel proteins that sense the extracellular milieu. Defective ciliary function causes ciliopathies such as autosomal dominant polycystic kidney disease (ADPKD). However, little is known about how large ciliary transmembrane proteins traffic to the cilia. Polycystin-1 (PC1) and -2 (PC2), the two ADPKD gene products, are large transmembrane proteins that co-localize to cilia where they act to control proper tubular diameter. Here we describe that PC1 and PC2 must interact and form a complex to reach the trans-Golgi network (TGN) for subsequent ciliary targeting. PC1 must also be proteolytically cleaved at a GPS site for this to occur. Using yeast two-hybrid screening coupled with a candidate approach, we identify a Rabep1/GGA1/Arl3-dependent ciliary targeting mechanism, whereby Rabep1 couples the polycystin complex to a GGA1/Arl3-based ciliary trafficking module at the TGN. This study provides novel insights into the ciliary trafficking mechanism of membrane proteins.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Cilios/metabolismo , Canales Catiónicos TRPP/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Red trans-Golgi/metabolismo , Factores de Ribosilacion-ADP/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Cilios/genética , Riñón/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Unión Proteica , Transporte de Proteínas , Canales Catiónicos TRPP/genética , Proteínas de Transporte Vesicular/genética , Red trans-Golgi/genética
8.
Nat Med ; 19(4): 488-93, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23524344

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by bilateral renal cyst formation. Recent identification of signaling cascades deregulated in ADPKD has led to the initiation of several clinical trials, but an approved therapy is still lacking. Using a metabolomic approach, we identify a pathogenic pathway in this disease that can be safely targeted for therapy. We show that mutation of PKD1 results in enhanced glycolysis in cells in a mouse model of PKD and in kidneys from humans with ADPKD. Glucose deprivation resulted in lower proliferation and higher apoptotic rates in PKD1-mutant cells than in nondeprived cells. Notably, two distinct PKD mouse models treated with 2-deoxyglucose (2DG), to inhibit glycolysis, had lower kidney weight, volume, cystic index and proliferation rates as compared to nontreated mice. These metabolic alterations depend on the extracellular signal-related kinase (ERK) pathway acting in a dual manner by inhibiting the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) axis on the one hand while activating the mTOR complex 1 (mTORC1)-glycolytic cascade on the other. Enhanced metabolic rates further inhibit AMPK. Forced activation of AMPK acts in a negative feedback loop, restoring normal ERK activity. Taken together, these data indicate that defective glucose metabolism is intimately involved in the pathobiology of ADPKD. Our findings provide a strong rationale for a new therapeutic strategy using existing drugs, either individually or in combination.


Asunto(s)
Glucosa/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Desoxiglucosa/farmacología , Modelos Animales de Enfermedad , Glucólisis/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Proteínas Quinasas/fisiología , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/fisiología
9.
J Biol Chem ; 282(30): 21729-37, 2007 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-17525154

RESUMEN

Polycystin-1 (PC1), the PKD1 gene product, plays a critical role in renal tubule diameter control and disruption of its function causes cyst formation in human autosomal dominant polycystic kidney disease. Recent evidence shows that PC1 undergoes cleavage at the juxtamembrane G protein-coupled receptor proteolytic site (GPS), a process likely to be essential for its biological activity. Here we further characterized the proteolytic cleavage of PC1 at the GPS domain. We determined the actual cleavage site to be between leucine and threonine of the tripeptide HLT(3049) of human PC1. Cleavage occurs in the early intracellular secretory pathway and requires initial N-glycan attachment but not its subsequent trimming. We provide evidence that the cleavage occurs via a cis-autoproteolytic mechanism involving an ester intermediate as shown for Ntn hydrolases and EMR2.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Cartilla de ADN , Perros , Glicosilación , Humanos , Riñón , Túbulos Renales/patología , Datos de Secuencia Molecular , Mapeo Peptídico , Riñón Poliquístico Autosómico Dominante/patología , Receptores Odorantes/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/metabolismo
10.
Am J Physiol Cell Physiol ; 283(1): C327-37, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12055102

RESUMEN

Representational difference analysis of the glomerular endothelial cell response to transforming growth factor-beta1 (TGF-beta1) revealed a novel gene, TIMAP (TGF-beta-inhibited membrane-associated protein), which contains 10 exons and maps to human chromosome 20.q11.22. By Northern blot, TIMAP mRNA is highly expressed in all cultured endothelial and hematopoietic cells. The frequency of the TIMAP SAGE tag is much greater in endothelial cell SAGE databases than in nonendothelial cells. Immunofluorescence studies of rat tissues show that anti-TIMAP antibodies localize to vascular endothelium. TGF-beta1 represses TIMAP through a protein synthesis- and histone deacetylase-dependent process. The TIMAP protein contains five ankyrin repeats, a protein phosphatase-1 (PP1)-interacting domain, a COOH-terminal CAAX box, a domain arrangement similar to that of MYPT3, and a PP1 inhibitor. A green fluorescent protein-TIMAP fusion protein localized to the plasma membrane in a CAAX box-dependent fashion. Hence, TIMAP is a novel gene highly expressed in endothelial and hematopoietic cells and regulated by TGF-beta1. On the basis of its domain structure, TIMAP may serve a signaling function, potentially through interaction with PP1.


Asunto(s)
Endotelio Vascular/fisiología , Expresión Génica/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Factor de Crecimiento Transformador beta/fisiología , Animales , Bovinos , Línea Celular , Membrana Celular/metabolismo , Células Cultivadas , Cicloheximida/farmacología , ADN Complementario/genética , Dactinomicina/farmacología , Endotelio Vascular/citología , Genoma Humano , Histona Desacetilasas/farmacología , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Mensajero/metabolismo , Distribución Tisular , Factor de Crecimiento Transformador beta1
11.
Proc Natl Acad Sci U S A ; 99(26): 16981-6, 2002 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-12482949

RESUMEN

Polycystin-1 plays an essential role in renal tubular morphogenesis, and disruption of its function causes cystogenesis in human autosomal-dominant polycystic kidney disease (ADPKD). We demonstrated that polycystin-1 undergoes cleavage at G protein coupled receptor proteolytic site in a process that requires the receptor for egg jelly domain. Most of the N-terminal fragment remains tethered at the cell surface, although a small amount is secreted. PKD1-associated mutations in the receptor for egg jelly domain disrupt cleavage, abolish the ability of polycystin-1 to activate signal transducer and activator of transcription-1, and induce tubulogenesis in vitro. We conclude that the cleavage of polycystin-1 is likely essential for its biologic activity.


Asunto(s)
Mutación , Riñón Poliquístico Autosómico Dominante/genética , Proteínas/metabolismo , Receptores de Superficie Celular/fisiología , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas/química , Receptores de Superficie Celular/química , Transducción de Señal , Canales Catiónicos TRPP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA