Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nitric Oxide ; 100-101: 30-37, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32283263

RESUMEN

Epididymal epithelium possesses active ion transport properties conducive to the maintenance of appropriate epididymal intraluminal microenvironment. The endogenous gasotransmitter carbon monoxide (CO) regulates numerous cellular processes including water and electrolyte transport in various epithelia. However, the functional role of CO in epididymal epithelium is still elusive. This study aims to explore the potential regulatory effect of CO on transepithelial ion transport in rat epididymis. Using qPCR technique, we verified that endogenous CO synthase heme oxygenase 1 was expressed in rat caput, corpus, and cauda epididymis. In addition, endogenous CO was detected in rat cauda epididymis. Ussing chamber experiments showed that CORM-2, a CO donor, induced an increase of the short-circuit current (ISC) in a concentration-dependent manner in rat cauda epididymal epithelium. The ISC response could be abrogated by removing the ambient Cl- or HCO3-. Interfering with the cAMP signaling pathway or blocking cystic fibrosis transmembrane regulator (CFTR) partially suppressed the CO-stimulated ISC response. Moreover, the CO-evoked ISC response was significantly attenuated by blocking Ca2+-activated Cl- channel (CaCC) or chelating intracellular Ca2+. Elevation of intracellular Ca2+ level was also observed after CO stimulation in rat cauda epididymal epithelial cells. Collectively, this study demonstrated that CO stimulated anion secretion via activation of CFTR and CaCC in rat cauda epididymal epithelium, which might contribute to the formation of the appropriate microenvironment essential for sperm storage.


Asunto(s)
Monóxido de Carbono/metabolismo , Epidídimo/fisiología , Epitelio/fisiología , Transporte Iónico/fisiología , Animales , Canales de Cloruro/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Epidídimo/efectos de los fármacos , Epitelio/efectos de los fármacos , Hemo Oxigenasa (Desciclizante)/metabolismo , Transporte Iónico/efectos de los fármacos , Masculino , Compuestos Organometálicos/farmacología , Ratas Sprague-Dawley
2.
Biochem Biophys Res Commun ; 487(3): 517-524, 2017 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-28412354

RESUMEN

Several studies have implicated estrogen and the estrogen receptor (ER) in the pathogenesis of benign prostatic hyperplasia (BPH); however, the mechanism underlying this effect remains elusive. In the present study, we demonstrated that estrogen (17ß-estradiol, or E2)-induced activation of the G protein-coupled receptor 30 (GPR30) triggered Ca2+ release from the endoplasmic reticulum, increased the mitochondrial Ca2+ concentration, and thus induced prostate epithelial cell (PEC) apoptosis. Both E2 and the GPR30-specific agonist G1 induced a transient intracellular Ca2+ release in PECs via the phospholipase C (PLC)-inositol 1, 4, 5-triphosphate (IP3) pathway, and this was abolished by treatment with the GPR30 antagonist G15. The release of cytochrome c and activation of caspase-3 in response to GPR30 activation were observed. Data generated from the analysis of animal models and human clinical samples indicate that treatment with the GPR30 agonist relieves testosterone propionate (TP)-induced prostatic epithelial hyperplasia, and that the abundance of GPR30 is negatively associated with prostate volume. On the basis of these results, we propose a novel regulatory mechanism whereby estrogen induces the apoptosis of PECs via GPR30 activation. Inhibition of this activation is predicted to lead to abnormal PEC accumulation, and to thereby contribute to BPH pathogenesis.


Asunto(s)
Apoptosis/efectos de los fármacos , Estrógenos/farmacología , Próstata/efectos de los fármacos , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/patología , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Benzodioxoles/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Perros , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Ratones , Próstata/citología , Hiperplasia Prostática/metabolismo , Quinolinas/farmacología , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Relación Estructura-Actividad
3.
J Sex Med ; 13(5): 798-807, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27114193

RESUMEN

INTRODUCTION: Hydrogen sulfide (H2S) plays a large role in female and male sexual responses characterized by a smooth muscle relaxant effect. Moreover, H2S is a novel pro-secretory neuromodulator that modulates epithelial ion transport. However, whether H2S has a role in regulating vaginal epithelial ion transport and fluid secretion has not been extensively studied. AIM: To identify the effects of H2S on vaginal epithelial ion transport and lubrication in an exploratory investigation. METHODS: The mRNA, protein expression, and localization of cystathionine γ-lyase (CSE) and H2S production in vaginal epithelium were examined by reverse transcriptase polymerase chain reaction, Western blot, H2S synthesizing activity assay, and immunohistochemistry, respectively. The effect of H2S on vaginal epithelial ion transport, vaginal fluid secretion, and ionic concentration was investigated using a short-circuit current (ISC), a measurement of vaginal lubrication, and ion chromatography, respectively. MAIN OUTCOME MEASURES: The mRNA, protein expression, and localization of CSE, H2S formation, changes of ISC responses, vaginal lubrication, and K(+) and Cl(-) concentrations were studied. RESULTS: CSE mRNA and protein were predominantly expressed in vaginal epithelium. Sodium hydrosulfide hydrate (NaHS) caused concentration-dependent changes in ISC across isolated rat vaginal epithelium, which consisted of an initial decrease phase and then an increase phase. The increase phase in ISC was mainly Cl(-) dependent and abolished by cystic fibrosis transmembrane conductance regulator inhibitor, whereas the decrease phase was sensitive to the adenosine triphosphate-sensitive K(+) (KATP) channel blocker. Furthermore, intravaginal treatment of NaHS significantly enhanced vaginal lubrication in vivo, and this effect was prevented by cystic fibrosis transmembrane conductance regulator and KATP channel inhibitors. In addition, the ionic concentrations of K(+) and Cl(-) in rat vaginal fluid were significantly increased by NaHS treatment. CONCLUSION: The CSE-H2S pathway participates in the regulation of vaginal epithelial K(+) and Cl(-) ion transport to modulate lumen fluid secretion.


Asunto(s)
Nivel de Alerta/fisiología , Cistationina gamma-Liasa/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Sulfuro de Hidrógeno/metabolismo , Vagina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Epitelio , Femenino , Transporte Iónico , Lubrificación , Ratas , Ratas Sprague-Dawley
4.
Signal Transduct Target Ther ; 9(1): 74, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528022

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection disrupts the epithelial barrier and triggers airway inflammation. The envelope (E) protein, a core virulence structural component of coronaviruses, may play a role in this process. Pathogens could interfere with transepithelial Cl- transport via impairment of the cystic fibrosis transmembrane conductance regulator (CFTR), which modulates nuclear factor κB (NF-κB) signaling. However, the pathological effects of SARS-CoV-2 E protein on airway epithelial barrier function, Cl- transport and the robust inflammatory response remain to be elucidated. Here, we have demonstrated that E protein down-regulated the expression of tight junctional proteins, leading to the disruption of the airway epithelial barrier. In addition, E protein triggered the activation of Toll-like receptor (TLR) 2/4 and downstream c-Jun N-terminal kinase (JNK) signaling, resulting in an increased intracellular Cl- concentration ([Cl-]i) via up-regulating phosphodiesterase 4D (PDE4D) expression in airway epithelial cells. This elevated [Cl-]i contributed to the heightened airway inflammation through promoting the phosphorylation of serum/glucocorticoid regulated kinase 1 (SGK1). Moreover, blockade of SGK1 or PDE4 alleviated the robust inflammatory response induced by E protein. Overall, these findings provide novel insights into the pathogenic role of SARS-CoV-2 E protein in airway epithelial damage and the ongoing airway inflammation during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/metabolismo , Inflamación/genética , Inflamación/metabolismo , Transducción de Señal , Células Epiteliales/metabolismo , Glucocorticoides
5.
J Infect ; 86(1): 47-59, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334726

RESUMEN

Toxoplasma gondii is a widespread parasitic protozoan causing toxoplasmosis including pulmonary toxoplasmosis. As the first line of host defense, airway epithelial cells play critical roles in orchestrating pulmonary innate immunity. However, the mechanism underlying the airway inflammation induced by the T. gondii infection remains largely unclear. This study demonstrated that after infection with T. gondii, the major anion channel located in the apical membranes of airway epithelial cells, cystic fibrosis transmembrane conductance regulator (CFTR), was degraded by the parasite-secreted cysteine proteases. The intracellular Cl- concentration ([Cl-]i) was consequently elevated, leading to activation of nuclear factor-κB (NF-κB) signaling via serum/glucocorticoid regulated kinase 1. Furthermore, the heightened [Cl-]i and activated NF-κB signaling could be sustained in a positive feedback regulatory manner resulting from decreased intracellular cAMP level through NF-κB-mediated up-regulation of phosphodiesterase 4. Conversely, the sulfur-containing compound allicin conferred anti-inflammatory effects on pulmonary toxoplasmosis by decreasing [Cl-]i via activation of CFTR. These results suggest that the intracellular Cl- dynamically modulated by T. gondii mediates sustained airway inflammation, which provides a potential therapeutic target against pulmonary toxoplasmosis.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Epitelio , Toxoplasmosis , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Epitelio/metabolismo , Inflamación , Pulmón , FN-kappa B/metabolismo , Toxoplasma
6.
Front Pharmacol ; 13: 890284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784719

RESUMEN

Airway epithelium plays critical roles in regulating airway surface liquid (ASL), the alteration of which causes mucus stasis symptoms. Allicin is a compound released from garlic and harbors the capacity of lung-protection. However, the potential regulatory effects of allicin on airway epithelium remain elusive. This study aimed to investigate the effects of allicin on ion transport across airway epithelium and evaluate its potential as an expectorant. Application of allicin induced Cl- secretion across airway epithelium in a concentration-dependent manner. Blockade of cystic fibrosis transmembrane conductance regulator (CFTR) or inhibition of adenylate cyclase-cAMP signaling pathway attenuated allicin-induced Cl- secretion in airway epithelial cells. The in vivo study showed that inhaled allicin significantly increased the ASL secretion in mice. These results suggest that allicin induces Cl- and fluid secretion across airway epithelium via activation of CFTR, which might provide therapeutic strategies for the treatment of chronic pulmonary diseases associated with ASL dehydration.

7.
Signal Transduct Target Ther ; 7(1): 255, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896532

RESUMEN

SARS-CoV-2, the culprit pathogen of COVID-19, elicits prominent immune responses and cytokine storms. Intracellular Cl- is a crucial regulator of host defense, whereas the role of Cl- signaling pathway in modulating pulmonary inflammation associated with SARS-CoV-2 infection remains unclear. By using human respiratory epithelial cell lines, primary cultured human airway epithelial cells, and murine models of viral structural protein stimulation and SARS-CoV-2 direct challenge, we demonstrated that SARS-CoV-2 nucleocapsid (N) protein could interact with Smad3, which downregulated cystic fibrosis transmembrane conductance regulator (CFTR) expression via microRNA-145. The intracellular Cl- concentration ([Cl-]i) was raised, resulting in phosphorylation of serum glucocorticoid regulated kinase 1 (SGK1) and robust inflammatory responses. Inhibition or knockout of SGK1 abrogated the N protein-elicited airway inflammation. Moreover, N protein promoted a sustained elevation of [Cl-]i by depleting intracellular cAMP via upregulation of phosphodiesterase 4 (PDE4). Rolipram, a selective PDE4 inhibitor, countered airway inflammation by reducing [Cl-]i. Our findings suggested that Cl- acted as the crucial pathological second messenger mediating the inflammatory responses after SARS-CoV-2 infection. Targeting the Cl- signaling pathway might be a novel therapeutic strategy for COVID-19.


Asunto(s)
COVID-19 , Cloro/metabolismo , MicroARNs , Animales , COVID-19/genética , Humanos , Inflamación/patología , Ratones , MicroARNs/metabolismo , Proteínas de la Nucleocápside , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , SARS-CoV-2
8.
Mol Cell Endocrinol ; 526: 111219, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33610642

RESUMEN

Prostaglandin E2 (PGE2) is a principal lipid mediator mediating various biological processes including immune responses and fluid secretion. As the first line of host defense against infection, vaginal epithelium plays orchestrated roles in vaginal innate immunity. However, the effect of PGE2 triggered by pro-inflammatory stimuli on vaginal epithelium remains elusive. This study aimed to investigate the regulatory role of PGE2 on vaginal epithelium after lipopolysaccharide (LPS) stimulation. RT-PCR and western blot analysis revealed that E-prostanoid (EP) receptors EP2 and EP4 were expressed in rat vagina. Basolateral application of PGE2 induced anion secretion mediated by cystic fibrosis transmembrane conductance regulator (CFTR) via EP-adenylate cyclase-cAMP signaling pathway in rat vaginal epithelial cells. The in vivo study showed that PGE2 promoted fluid secretion in rat vagina. Moreover, LPS stimulation facilitated cyclooxygenase-dependent PGE2 synthesis and vaginal fluid secretion in vivo. Conclusively, LPS stimulation triggered epithelium-derived PGE2 production in vaginal epithelium, leading to CFTR-mediated anion secretion and luminal flushing. This study provides valuable insights into the physiological role of PGE2 during vaginal bacterial infection.


Asunto(s)
Líquidos Corporales/metabolismo , Dinoprostona/farmacología , Epitelio/metabolismo , Lipopolisacáridos/farmacología , Vagina/metabolismo , Animales , Aniones , Líquidos Corporales/efectos de los fármacos , AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fenómenos Electrofisiológicos/efectos de los fármacos , Epitelio/efectos de los fármacos , Femenino , Modelos Biológicos , Ratas Sprague-Dawley , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal/efectos de los fármacos , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Vagina/efectos de los fármacos
9.
PLoS Negl Trop Dis ; 15(4): e0009319, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33861752

RESUMEN

Trichomonas vaginalis is a common protozoan parasite, which causes trichomoniasis associated with severe adverse reproductive outcomes. However, the underlying pathogenesis has not been fully understood. As the first line of defense against invading pathogens, the vaginal epithelial cells are highly responsive to environmental stimuli and contribute to the formation of the optimal luminal fluid microenvironment. The cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel widely distributed at the apical membrane of epithelial cells, plays a crucial role in mediating the secretion of Cl- and HCO3-. In this study, we investigated the effect of T. vaginalis on vaginal epithelial ion transport elicited by prostaglandin E2 (PGE2), a major prostaglandin in the semen. Luminal administration of PGE2 triggered a remarkable and sustained increase of short-circuit current (ISC) in rat vaginal epithelium, which was mainly due to Cl- and HCO3- secretion mediated by the cAMP-activated CFTR. However, T. vaginalis infection significantly abrogated the ISC response evoked by PGE2, indicating impaired transepithelial anion transport via CFTR. Using a primary cell culture system of rat vaginal epithelium and a human vaginal epithelial cell line, we demonstrated that the expression of CFTR was significantly down-regulated after T. vaginalis infection. In addition, defective Cl- transport function of CFTR was observed in T. vaginalis-infected cells by measuring intracellular Cl- signals. Conclusively, T. vaginalis restrained exogenous PGE2-induced anion secretion through down-regulation of CFTR in vaginal epithelium. These results provide novel insights into the intervention of reproductive complications associated with T. vaginalis infection such as infertility and disequilibrium in vaginal fluid microenvironment.


Asunto(s)
Aniones/metabolismo , Cloruros/metabolismo , Vaginitis por Trichomonas/tratamiento farmacológico , Vagina/patología , Animales , Aniones/farmacología , Transporte Biológico , Línea Celular , Células Cultivadas , Antiportadores de Cloruro-Bicarbonato/fisiología , AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Dinoprostona/metabolismo , Células Epiteliales/efectos de los fármacos , Epitelio/metabolismo , Epitelio/parasitología , Epitelio/patología , Femenino , Humanos , Ratas , Ratas Sprague-Dawley , Vaginitis por Trichomonas/parasitología , Trichomonas vaginalis/metabolismo , Vagina/metabolismo , Vagina/parasitología
10.
Int J Parasitol ; 49(9): 697-704, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31254529

RESUMEN

Trichomonas vaginalis is a primary urogenital parasite that causes trichomoniasis, a common sexually transmitted disease. As the first line of host defense, vaginal epithelial cells play critical roles in orchestrating vaginal innate immunity and modulate intracellular Cl- homeostasis via the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that plays positive roles in regulating nuclear factor-κB (NF-κB) signalling. However, the association between T. vaginalis infection and intracellular Cl- disequilibrium remains elusive. This study showed that after T. vaginalis infection, CFTR was markedly down-regulated by cysteine proteases in vaginal epithelial cells. The intracellular Cl- concentration ([Cl-]i) was consequently elevated, leading to NF-κB signalling activation via serum- and glucocorticoid-inducible kinase-1. Moreover, heightened [Cl-]i and activated NF-κB signalling could be sustained in a positive feedback regulatory manner resulting from decreased intracellular cAMP through NF-κB-mediated up-regulation of phosphodiesterase 4. The results conclusively revealed that the intracellular Cl- of the human vaginal epithelium could be dynamically modulated by T. vaginalis, which contributed to mediation of epithelial inflammation in the human vagina.


Asunto(s)
Cloruros/metabolismo , Vaginitis por Trichomonas/prevención & control , Trichomonas vaginalis/efectos de los fármacos , Vagina/patología , Western Blotting , Línea Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Proteasas de Cisteína/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulación hacia Abajo , Ensayo de Inmunoadsorción Enzimática , Epitelio/metabolismo , Epitelio/parasitología , Epitelio/patología , Femenino , Humanos , Proteínas Inmediatas-Precoces/metabolismo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Vaginitis por Trichomonas/parasitología , Vagina/metabolismo , Vagina/parasitología
11.
Front Physiol ; 9: 1886, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30666217

RESUMEN

As a novel gasotransmitter, hydrogen sulfide (H2S) elicits various physiological actions including smooth muscle relaxation and promotion of transepithelial ion transport. However, the pro-secretory function of H2S in the male reproductive system remains largely unclear. The aim of this study is to elucidate the possible roles of H2S in modulating rat epididymal intraluminal ionic microenvironment essential for sperm storage. The results revealed that endogenous H2S-generating enzymes cystathionine ß-synthetase (CBS) and cystathionine γ-lyase (CSE) were both expressed in rat epididymis. CBS located predominantly in epithelial cells whilst CSE expressed primarily in smooth muscle cells. The relative expression level of CBS and CSE escalated from caput to cauda regions of epididymis, which was paralleled to the progressively increasing production of endogenous H2S. The effect of H2S on epididymal epithelial ion transportation was investigated using short-circuit current (I SC), measurement of intracellular ion concentration and in vivo rat epididymal microperfusion. Our data showed that H2S induced transepithelial K+ secretion via adenosine triphosphate-sensitive K+ (KATP) channel and large conductance Ca2+-activated K+ (BKCa) channel. Transient receptor potential vanilloid 4 (TRPV4) channel-mediated Ca2+ influx was implicated in the activation of BKCa channel. In vivo studies further demonstrated that H2S promoted K+ secretion in rat epididymal epithelium. Inhibition of endogenous H2S synthesis caused a significant decrease in K+ concentration of cauda epididymal intraluminal fluid. Moreover, our data demonstrated that high extracellular K+ concentration actively depressed the motility of cauda epididymal sperm in a pH-independent manner. Collectively, the present study demonstrated that H2S was vital to the formation of high K+ concentration in epididymal intraluminal fluid by promoting the transepithelial K+ secretion, which might contribute to the maintenance of the cauda epididymal sperm in quiescent dormant state before ejaculation.

12.
Mucosal Immunol ; 11(4): 1149-1157, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29545647

RESUMEN

Airway epithelial cells harbor the capacity of active Cl- transepithelial transport and play critical roles in modulating innate immunity. However, whether intracellular Cl- accumulation contributes to relentless airway inflammation remains largely unclear. This study showed that, in airway epithelial cells, intracellular Cl- concentration ([Cl-]i) was increased after Pseudomonas aeruginosa lipopolysaccharide (LPS) stimulation via nuclear factor-κB (NF-κB)-phosphodiesterase 4D (PDE4D)-cAMP signaling pathways. Clamping [Cl-]i at high levels or prolonged treatment with LPS augmented serum- and glucocorticoid-inducible protein kinase 1 (SGK1) phosphorylation and subsequently triggered NF-κB activation in airway epithelial cells, whereas inhibition of SGK1 abrogated airway inflammation in vitro and in vivo. Furthermore, Cl--SGK1 signaling pathway was pronouncedly activated in patients with bronchiectasis, a chronic airway inflammatory disease. Conversely, hydrogen sulfide (H2S), a sulfhydryl-containing gasotransmitter, confers anti-inflammatory effects through decreasing [Cl-]i via activation of cystic fibrosis transmembrane conductance regulator (CFTR). Our study confirms that intracellular Cl- is a crucial mediator of sustained airway inflammation. Medications that abrogate excessively increased intracellular Cl- may offer novel targets for the management of airway inflammatory diseases.


Asunto(s)
Bronquiectasia/inmunología , Cloruros/metabolismo , Inflamación/inmunología , Espacio Intracelular/metabolismo , Pseudomonas aeruginosa/inmunología , Mucosa Respiratoria/inmunología , Adulto , Animales , Línea Celular , Femenino , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Inmunidad Innata , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Endogámicos , Persona de Mediana Edad , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Mucosa Respiratoria/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA