Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(20): e2303479120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155876

RESUMEN

The human tumor suppressor Ring finger protein 20 (RNF20)-mediated histone H2B monoubiquitination (H2Bub) is essential for proper chromosome segregation and DNA repair. However, what is the precise function and mechanism of RNF20-H2Bub in chromosome segregation and how this pathway is activated to preserve genome stability remain unknown. Here, we show that the single-strand DNA-binding factor Replication protein A (RPA) interacts with RNF20 mainly in the S and G2/M phases and recruits RNF20 to mitotic centromeres in a centromeric R-loop-dependent manner. In parallel, RPA recruits RNF20 to chromosomal breaks upon DNA damage. Disruption of the RPA-RNF20 interaction or depletion of RNF20 increases mitotic lagging chromosomes and chromosome bridges and impairs BRCA1 and RAD51 loading and homologous recombination repair, leading to elevated chromosome breaks, genome instability, and sensitivities to DNA-damaging agents. Mechanistically, the RPA-RNF20 pathway promotes local H2Bub, H3K4 dimethylation, and subsequent SNF2H recruitment, ensuring proper Aurora B kinase activation at centromeres and efficient loading of repair proteins at DNA breaks. Thus, the RPA-RNF20-SNF2H cascade plays a broad role in preserving genome stability by coupling H2Bub to chromosome segregation and DNA repair.


Asunto(s)
Reparación del ADN por Recombinación , Proteína de Replicación A , Humanos , Cromatina , Segregación Cromosómica , Reparación del ADN , Inestabilidad Genómica , Histonas/genética , Histonas/metabolismo , Recombinación Homóloga , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo
2.
Nucleic Acids Res ; 51(11): 5565-5583, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37140030

RESUMEN

The single-stranded DNA (ssDNA) binding protein complex RPA plays a critical role in promoting DNA replication and multiple DNA repair pathways. However, how RPA is regulated to achieve its functions precisely in these processes remains elusive. Here, we found that proper acetylation and deacetylation of RPA are required to regulate RPA function in promoting high-fidelity DNA replication and repair. We show that yeast RPA is acetylated on multiple conserved lysines by the acetyltransferase NuA4 upon DNA damage. Mimicking constitutive RPA acetylation or blocking its acetylation causes spontaneous mutations with the signature of micro-homology-mediated large deletions or insertions. In parallel, improper RPA acetylation/deacetylation impairs DNA double-strand break (DSB) repair by the accurate gene conversion or break-induced replication while increasing the error-prone repair by single-strand annealing or alternative end joining. Mechanistically, we show that proper acetylation and deacetylation of RPA ensure its normal nuclear localization and ssDNA binding ability. Importantly, mutation of the equivalent residues in human RPA1 also impairs RPA binding on ssDNA, leading to attenuated RAD51 loading and homologous recombination repair. Thus, timely RPA acetylation and deacetylation likely represent a conserved mechanism promoting high-fidelity replication and repair while discriminating the error-prone repair mechanisms in eukaryotes.


Asunto(s)
Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae , Humanos , Acetilación , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Histona Acetiltransferasas/metabolismo , Recombinasa Rad51/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Células HeLa
3.
J Am Chem Soc ; 146(1): 514-520, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38126275

RESUMEN

Without employing isotopic labeling, we demonstrate the generation of 15N and 13C NMR signals for molecules containing -NH2 motifs using benchtop NMR spectrometers (1-1.4 T). Specifically, high-SNR (>50) detection of ammonia, 4-aminopyridine, benzylamine, and phenethylamine dissolved in methanol or dichloromethane is demonstrated after only 10 s of parahydrogen bubbling using signal amplification by reversible exchange and applying a pulse sequence based on spin-lock-induced crossing. Optimization of the sequence parameters allows us to achieve up to 12% 15N and 0.4% 13C polarization in situ without the need for the sample transfer typically employed in other hyperpolarization methods. Moreover, hyperpolarization is generated continuously without having to stop the parahydrogen bubbling to reset magnetization, paving the way toward fast 2D spectroscopic methods and relaxometry. The provided methodology may find application for the identification of diluted chemicals relevant to industry and research with the aid of affordable benchtop NMR spectrometers.

4.
Apoptosis ; 29(1-2): 66-85, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37943371

RESUMEN

Pyroptosis is a gasdermin-mediated programmed cell death (PCD) pathway. It differs from apoptosis because of the secretion of inflammatory molecules. Pyroptosis is closely associated with various malignant tumors. Recent studies have demonstrated that pyroptosis can either inhibit or promote the development of malignant tumors, depending on the cell type (immune or cancer cells) and duration and severity of the process. This review summarizes the molecular mechanisms of pyroptosis, its relationship with malignancies, and focuses on current pyroptosis inducers and their significance in cancer treatment. The molecules involved in the pyroptosis signaling pathway could serve as therapeutic targets for the development of novel drugs for cancer therapy. In addition, we analyzed the potential of combining pyroptosis with conventional anticancer techniques as a promising strategy for cancer treatment.


Asunto(s)
Neoplasias , Piroptosis , Humanos , Apoptosis , Transducción de Señal , Neoplasias/tratamiento farmacológico , Neoplasias/genética
5.
J Transl Med ; 22(1): 326, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566102

RESUMEN

BACKGROUND: The effects of gut microbiota and metabolites on the responses to immune checkpoint inhibitors (ICIs) in advanced epidermal growth factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLC) have been studied. However, their effects on EGFR-mutated (EGFR +) NSCLC remain unknown. METHODS: We prospectively recorded the clinicopathological characteristics of patients with advanced EGFR + NSCLC and assessed potential associations between the use of antibiotics or probiotics and immunotherapy efficacy. Fecal samples were collected at baseline, early on-treatment, response and progression status and were subjected to metagenomic next-generation sequencing and ultra-high-performance liquid chromatography-mass spectrometry analyses to assess the effects of gut microbiota and metabolites on immunotherapy efficacy. RESULTS: The clinical data of 74 advanced EGFR + NSCLC patients were complete and 18 patients' fecal samples were dynamically collected. Patients that used antibiotics had shorter progression-free survival (PFS) (mPFS, 4.8 vs. 6.7 months; P = 0.037); probiotics had no impact on PFS. Two dynamic types of gut microbiota during immunotherapy were identified: one type showed the lowest relative abundance at the response time point, whereas the other type showed the highest abundance at the response time point. Metabolomics revealed significant differences in metabolites distribution between responders and non-responders. Deoxycholic acid, glycerol, and quinolinic acid were enriched in responders, whereas L-citrulline was enriched in non-responders. There was a significant correlation between gut microbiota and metabolites. CONCLUSIONS: The use of antibiotics weakens immunotherapy efficacy in patients with advanced EGFR + NSCLC. The distribution characteristics and dynamic changes of gut microbiota and metabolites may indicate the efficacy of immunotherapy in advanced EGFR + NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoterapia , Receptores ErbB/genética , Antibacterianos/uso terapéutico
6.
Anal Biochem ; 685: 115391, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37952895

RESUMEN

This study investigates the co-catalytic capabilities of MoO3 nanosheets in enhancing the enzyme-like catalytic activity of a two-dimensional ultrathin Fe(III)-modified covalent triazine framework (Fe-CTF) under neutral pH conditions. The unique physicochemical surface properties and two-dimensional structures of Fe-CTF enable the direct immobilization of native enzymes (glucose oxidase (GOD) and xanthine oxidase (XOD)) through adsorption, eliminating the need for chemical processes. Efficient immobilization of the native enzymes within the Fe-CTF/GOD(XOD) hybrid is achieved through multipoint attachment involving various interactions. The Fe-CTF/MoO3 co-catalytic system exhibits enzyme-mimicking activity at neutral pH and, when combined with the high catalytic activity of the immobilized native enzymes, enables the development of a colorimetric method for glucose detection. This method demonstrates excellent facilitation, rapidity, sensitivity, and selectivity, with a linear detection range of 50-1000 µM and a limit of detection of 8.8 µM for glucose. Furthermore, a straightforward one-pot colorimetric method is established for screening XOD inhibitors. The inhibitory potential of a crude extract derived from Chinese water chestnut peel on XOD activity is evaluated using this method. The findings of this study pave the way for the utilization of nanozyme/native enzyme hybrids in pH-neutral conditions for one-pot colorimetric sensing. This work contributes to the advancement of enzyme-based sensing technologies and holds promise for various applications in biosensing and biomedical research.


Asunto(s)
Colorimetría , Compuestos Férricos , Colorimetría/métodos , Compuestos Férricos/química , Triazinas , Glucosa , Glucosa Oxidasa/química , Concentración de Iones de Hidrógeno , Peróxido de Hidrógeno
7.
Ann Hematol ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270644

RESUMEN

To investigate the prognostic impact of serum beta-2 microglobulin (B2M) in adult lymphoma-associated hemophagocytic lymphohistiocytosis (HLH). The clinical and laboratory characteristics of 326 adult patients in a multicenter cohort with lymphoma-associated HLH with available baseline serum B2M levels were retrospectively analyzed. A total of 326 cases were included in this study, and the median serum B2M level was 5.19 mg/L. The optimal cut-off of serum B2M was 8.73 mg/L, and the cases with serum B2M level >8.73 mg/L were older and had a more advanced stage, lower levels of platelets, albumin, and fibrinogen, and higher creatinine level. The serum B2M >8.73 mg/L, creatinine ≥133 µmol/L, fibrinogen ≤1.5 g/L, agranulocytosis (<0.5 × 109/L), severe thrombocytopenia (<50 × 109/L), and high Epstein-Barr virus DNA copy number were found to have independent prognostic values in all patients, and the serum B2M >8.73 mg/L was also an independent prognostic factor in patients with creatinine <133 µmol/L. Finally, a prognostic scoring system was established based on independent prognostic factors of all patients and categorized the patients into three groups with significant prognostic differences. This study confirmed that the serum B2M level can be an independent prognostic factor in lymphoma-associated HLH and established a prognostic scoring system to predict patients' survival.

8.
Pattern Recognit Lett ; 178: 62-68, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38186922

RESUMEN

The area under the Receiver Operating Characteristic (ROC) curve (AUC) is a standard metric for quantifying and comparing binary classifiers. A popular approach to estimating the AUCs and the associated variabilities - the variance of the AUC or the full covariance matrix of multiple correlated AUCs - is the one proposed by DeLong et al [1], which is based on the Mann Whitney two-sample U-statistics. The bias of a variance estimator is an important factor in applications such as hypothesis testing and construction of confidence intervals - a negatively biased variance estimator may lead to incorrect conclusions, and a positive bias is conservative hence preferable. In this work, we show that the (co-)variance estimate in DeLong's approach is always positively biased. More specifically, the difference matrix between the expectation of the estimated covariance and the true covariance is a positive semi-definite matrix. This bias is non-negligible when the sample size is small, and quickly diminishes as the sample size increases. Our method relies on constructing, from the AUC kernel, a random variable whose (co-)variance matrix coincides with the bias, thereby establishing the claim. We also discuss alternative approaches to AUC variance estimation that may potentially reduce the bias.

9.
Angew Chem Int Ed Engl ; 63(22): e202402877, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38523072

RESUMEN

Hyperpolarization techniques provide a dramatic increase in sensitivity of nuclear magnetic resonance spectroscopy and imaging. In spite of the outstanding progress in solution-state hyperpolarization of spin-1/2 nuclei, hyperpolarization of quadrupolar nuclei remains challenging. Here, hyperpolarization of quadrupolar 14N nuclei with natural isotopic abundance of >99 % is demonstrated. This is achieved via pairwise addition of parahydrogen to tetraalkylammonium salts with vinyl or allyl unsaturated moieties followed by a subsequent polarization transfer from 1H to 14N nuclei at high magnetic field using PH-INEPT or PH-INEPT+ radiofrequency pulse sequence. Catalyst screening identified water-soluble rhodium complex [Rh(P(m-C6H4SO3Na)3)3Cl] as the most efficient catalyst for hyperpolarization of the substrates under study, providing up to 1.3 % and up to 6.6 % 1H polarization in the cases of vinyl and allyl precursors, respectively. The performance of PH-INEPT and PH-INEPT+ pulse sequences was optimized with respect to interpulse delays, and the resultant experimental dependences were in good agreement with simulations. As a result, 14N NMR signal enhancement of up to 760-fold at 7.05 T (corresponding to 0.15 % 14N polarization) was obtained.

10.
Eur J Nucl Med Mol Imaging ; 49(8): 2902-2916, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35146578

RESUMEN

PURPOSE: To develop and externally validate models incorporating a PET radiomics signature (R-signature) obtained by the cross-combination method for predicting the survival of patients with diffuse large B-cell lymphoma (DLBCL). METHODS: A total of 383 patients with DLBCL from two medical centres between 2011 and 2019 were included. The cross-combination method was used on three types of PET radiomics features from the training cohort to generate 49 feature selection-classification candidates based on 7 different machine learning models. The R-signature was then built by selecting the optimal candidates based on their progression-free survival (PFS) and overall survival (OS). Cox regression analysis was used to develop the survival prediction models. The calibration, discrimination, and clinical utility of the models were assessed and externally validated. RESULTS: The R-signatures determined by 12 and 31 radiomics features were significantly associated with PFS and OS, respectively (P<0.05). The combined models that incorporated R-signatures, metabolic metrics, and clinical risk factors exhibited significant prognostic superiority over the clinical models, PET-based models, and the National Comprehensive Cancer Network International Prognostic Index in terms of both PFS (C-index: 0.801 vs. 0.732 vs. 0.785 vs. 0.720, respectively) and OS (C-index: 0.807 vs. 0.740 vs. 0.773 vs. 0.726, respectively). For external validation, the C-indices were 0.758 vs. 0.621 vs. 0.732 vs. 0.673 and 0.794 vs. 0.696 vs. 0.781 vs. 0.708 in the PFS and OS analyses, respectively. The calibration curves showed good consistency, and the decision curve analysis supported the clinical utility of the combined model. CONCLUSION: The R-signature could be used as a survival predictor for DLBCL, and its combination with clinical factors may allow for accurate risk stratification.


Asunto(s)
Fluorodesoxiglucosa F18 , Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/diagnóstico por imagen , Linfoma de Células B Grandes Difuso/metabolismo , Pronóstico , Supervivencia sin Progresión , Estudios Retrospectivos
11.
Eur Radiol ; 32(8): 5730-5741, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35298676

RESUMEN

OBJECTIVES: To investigate the prognostic value of PET radiomics feature in the prognosis of patients with primary gastrointestinal diffuse large B cell lymphoma (PGI-DLBCL) treated with R-CHOP-like regimen. METHODS: A total of 140 PGI-DLBCL patients who underwent pre-therapy [18F] FDG PET/CT were enrolled in this retrospective analysis. PET radiomics features obtained from patients in the training cohort were subjected to three machine learning methods and Pearson's correlation test for feature selection. Support vector machine (SVM) was used to build a radiomics signature classifier associated with progression-free survival (PFS) and overall survival (OS). A multivariate Cox proportional hazards regression model was established to predict survival outcomes. RESULTS: A total of 1421 PET radiomics features were extracted and reduced to 5 features to build a radiomics signature which was significantly associated with PFS and OS (p < 0.05). The combined model incorporating radiomics signatures, metabolic metrics, and clinical risk factors showed high C-indices in both the training (PFS: 0.825, OS: 0.834) and validation sets (PFS: 0.831, OS: 0.877). Decision curve analysis (DCA) demonstrated that the combined models achieved the most net benefit across a wider reasonable range of threshold probabilities for predicting PFS and OS. CONCLUSION: The newly developed radiomics signatures obtained by the ensemble strategy were independent predictors of PFS and OS for PGI-DLBCL patients. Moreover, the combined model with clinical and metabolic factors was able to predict patient prognosis and may enable personalized treatment decision-making. KEY POINTS: • Radiomics signatures generated from the optimal radiomics feature set from the [18F]FDG PET images can predict the survival of PGI-DLBCL patients. • The optimal radiomics feature set is constructed by integrating the feature selection outputs of LASSO, RF, Xgboost, and PC methods. • Combined models incorporating radiomics signatures from18F-FDG PET images, metabolic parameters, and clinical factors outperformed clinical models, and NCCN-IPI.


Asunto(s)
Fluorodesoxiglucosa F18 , Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Pronóstico , Estudios Retrospectivos
12.
Cell Commun Signal ; 19(1): 83, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34372855

RESUMEN

BACKGROUND: The positive transcription elongation factor b (P-TEFb) kinase activity is involved in the process of transcription. Cyclin-dependent kinase 9 (CDK9), a core component of P-TEFb, regulates the process of transcription elongation, which is associated with differentiation and apoptosis in many cancer types. Wogonin, a natural CDK9 inhibitor isolated from Scutellaria baicalensis. This study aimed to investigate the involved molecular mechanisms of wogonin on anti- chronic myeloid leukemia (CML) cells. MATERIALS AND METHODS: mRNA and protein levels were analysed by RT-qPCR and western blot. Flow cytometry was used to assess cell differentiation and apoptosis. Cell transfection, immunofluorescence analysis and co-immunoprecipitation (co-IP) assays were applied to address the potential regulatory mechanism of wogonin. KU-812 cells xenograft NOD/SCID mice model was used to assess and verify the mechanism in vivo. RESULTS: We reported that the anti-CML effects in K562, KU-812 and primary CML cells induced by wogonin were regulated by P-TEFb complex. We also confirmed the relationship between CDK9 and erythroid differentiation via knockdown the expression of CDK9. For further study the mechanism of erythroid differentiation induced by wogonin, co-IP experiments were used to demonstrate that wogonin increased the binding between GATA-1 and FOG-1 but decreased the binding between GATA-1 and RUNX1, which were depended on P-TEFb. Also, wogonin induced apoptosis and decreased the mRNA and protein levels of MCL-1 in KU-812 cells, which is the downstream of P-TEFb. In vivo studies showed wogonin had good anti-tumor effects in KU-812 xenografts NOD/ SCID mice model and decreased the proportion of human CD45+ cells in spleens of mice. We also verified that wogonin exhibited anti-CML effects through modulating P-TEFb activity in vivo. CONCLUSIONS: Our study indicated a special mechanism involving the regulation of P-TEFb kinase activity in CML cells, providing evidences for further application of wogonin in CML clinical treatment. Video Abstract.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/genética , Flavanonas/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Factor B de Elongación Transcripcional Positiva/genética , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Factor de Transcripción GATA1/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Terapia Molecular Dirigida , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Fosforilación/efectos de los fármacos , Factor B de Elongación Transcripcional Positiva/antagonistas & inhibidores , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Acta Pharmacol Sin ; 42(2): 290-300, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32747719

RESUMEN

Cutaneous T-cell lymphoma (CTCL) is characterized by a heterogeneous group of extranodal non-Hodgkin lymphomas, in which monoclonal T lymphocytes infiltrate the skin. LW-213, a derivative of wogonin, was found to induce cell apoptosis in chronic myeloid leukemia (CML). In this study, we investigated the effects of LW-213 on CTCL cells and the underlying mechanisms. We showed that LW-213 (1-25 µM) dose-dependently inhibited human CTCL cell lines (Hut-102, Hut-78, MyLa, and HH) with IC50 values of around 10 µM, meanwhile it potently inhibited primary leukemia cells derived from peripheral blood of T-cell lymphoma patients. We revealed that LW-213-induced apoptosis was accompanied by ROS formation and the release of calcium from endoplasmic reticulum (ER) through IP3R-1channel. LW-213 selectively activated CHOP and induced apoptosis in Hut-102 cells via activating PERK-eIF2α-ATF4 pathway. Interestingly, the degree of apoptosis and expression of ER stress-related proteins were alleviated in the presence of either N-acetyl cysteine (NAC), an ROS scavenger, or 2-aminoethyl diphenylborinate (2-APB), an IP3R-1 inhibitor, implicating ROS/calcium-dependent ER stress in LW-213-induced apoptosis. In NOD/SCID mice bearing Hut-102 cell line xenografts, administration of LW-213 (10 mg/kg, ip, every other day for 4 weeks) markedly inhibited the growth of Hut-102 derived xenografts and prolonged survival. In conclusion, our study provides a new insight into the mechanism of LW-213-induced apoptosis, suggesting the potential of LW-213 as a promising agent against CTCL.


Asunto(s)
Antineoplásicos/farmacología , Flavanonas/farmacología , Linfoma Cutáneo de Células T/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Factor de Transcripción Activador 4/metabolismo , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Flavanonas/administración & dosificación , Flavanonas/química , Humanos , Concentración 50 Inhibidora , Linfoma Cutáneo de Células T/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Cutáneas/patología , Factor de Transcripción CHOP/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , eIF-2 Quinasa/metabolismo
14.
Arch Toxicol ; 94(1): 305-323, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31760435

RESUMEN

Mitotic catastrophe of cancer cells induced by drugs is characterized by low dosage and low toxicity, representing a significant advantage in the cancer treatment. Effective therapeutic options are limited for T-cell malignancies patients who are still treated by high-dose multiagent chemotherapy, potentially followed by hematopoietic stem cell transplantation, highlighting the urgency for identification of more effective anti-T-cell malignancies drugs. The use of antineoplastic drugs which induced tumor cell mitotic catastrophe would be a new strategy for cancer therapy. Nevertheless, there is still no effective mitotic catastrophe agent in T-cell malignancies. Our study showed that nonlethal dosage (ND) of GL-V9 (5-hydroxy-8-methoxy-2-phenyl-7-(4-(pyrrolidin-1-yl) butoxy) 4 H-chromen-4-one) (2 µM), a potential anticancer drug, not only attenuated cell growth and survival, but also arrested the cell cycle in G2/M phase and induced multipolar spindles, nuclear alterations (micronucleation and multinucleation), which are the most prominent morphological characteristics of mitotic catastrophe, in T-cell malignancies cell lines including Jurkat, HuT-102, and HuT-78. Moreover, ND GL-V9 could trigger DNA damage, and significantly influence several mitosis-associated proteins. Besides, results showed that ND GL-V9 increased the activity of senescence-associated ß-galactosidase (SA-ß-Gal) following the induction of mitotic catastrophe in Jurkat and HuT-102 cells with intact p53, while causing apoptosis in p53-deficient HuT-78 cells. We concluded that the anti-T-cell malignancies effects of ND GL-V9 and clarified the precise regulation in the process of mitosis under the action of GL-V9 in T-cell malignancies. Our data provided new evidence for the study of T-cell malignancies treatment associated with mitotic catastrophe and cellular senescence induction.


Asunto(s)
Antineoplásicos/farmacología , Flavonoides/farmacología , Linfoma/tratamiento farmacológico , Mitosis/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Humanos , Células Jurkat , Linfoma/patología , Linfocitos T/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
15.
BMC Cancer ; 19(1): 988, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31647032

RESUMEN

BACKGROUND: Laparoscopic surgery, fast-track perioperative treatment and XELOX chemotherapy are effective strategies for shortening the duration of hospital stay for cancer patients. This trial aimed to clarify the safety and efficacy of the fast-track multidisciplinary treatment (FTMDT) model compared to conventional surgery combined with chemotherapy in Chinese colorectal cancer patients. METHODS: This trial was a prospective randomized controlled study with a 2 × 2 balanced factorial design and was conducted at six hospitals. Patients in group 1 (FTMDT) received fast-track perioperative treatment and XELOX adjuvant chemotherapy. Patients in group 2 (conventional treatment) received conventional perioperative treatment and mFOLFOX6 adjuvant chemotherapy. Subgroups 1a and 2a had laparoscopic surgery and subgroups 1b and 2b had open surgery. The primary endpoint was total length of hospital stay during treatment. RESULTS: A total of 374 patients were randomly assigned to the four subgroups, and 342 patients were finally analyzed, including 87 patients in subgroup 1a, 85 in subgroup 1b, 86 in subgroup 2a, and 84 in subgroup 2b. The total hospital stay of group 1 was shorter than that of group 2 [13 days, (IQR, 11-17 days) vs. 23.5 days (IQR, 15-42 days), P = 0.0001]. Compared to group 2, group 1 had lower surgical costs, fewer in-hospital complications and faster recovery (all P < 0.05). Subgroup 1a showed faster surgical recovery than that of subgroup 1b (all P < 0.05). There was no difference in 5-year overall survival between groups 1 and 2 [87.1% (95% CI, 80.7-91.5%) vs. 87.1% (95% CI, 80.8-91.4%), P = 0.7420]. CONCLUSIONS: The FTMDT model, which integrates laparoscopic surgery, fast-track treatment, and XELOX chemotherapy, was the superior model for enhancing the recovery of Chinese patients with colorectal cancer. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01080547 , registered on March 4, 2010.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/cirugía , Desoxicitidina/análogos & derivados , Fluorouracilo/análogos & derivados , Laparoscopía , Anciano , Capecitabina , Quimioterapia Adyuvante , Neoplasias Colorrectales/patología , Costos y Análisis de Costo , Desoxicitidina/uso terapéutico , Femenino , Fluorouracilo/uso terapéutico , Humanos , Tiempo de Internación , Leucovorina/uso terapéutico , Masculino , Persona de Mediana Edad , Compuestos Organoplatinos/uso terapéutico , Oxaloacetatos , Estudios Prospectivos , Calidad de Vida , Resultado del Tratamiento
16.
Carcinogenesis ; 39(10): 1292-1303, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-29346508

RESUMEN

Tumor necrosis factor alpha (TNFα) is a complicated cytokine which is involved in proliferation and differentiation of acute myelogenous leukemia (AML) cells through a poorly understood mechanism. Mechanistic studies indicate that TNFα induced binding of PI3K subunit p85α to N-terminal truncated nuclear receptor RXRα (tRXRα) proteins, and activated AKT. The activated PI3K/AKT pathway negatively regulated differentiation of AML cells through the upregulation of c-Myc. In addition, TNFα also induced activation of nuclear factor κB (NF-κB), a nuclear transcription factor which was shown to promote cell proliferation. The present study demonstrates that oroxylin A, a natural compound isolated from Scutellariae radix, sensitizes leukemia cells to TNFα and markedly enhances TNFα-induced growth inhibition and differentiation of AML cell including human leukemia cell lines and primary AML cells. Activation of PI3K/AKT pathway could be inhibited by oroxylin A through inhibiting expression of tRXRα in NB4 and HL-60-resistant cells. Furthermore, we found that oroxylin A inhibited the activation of NF-κB and the DNA binding activity by TNFα proved by EMSA in these two AML cell lines. Moreover, in vivo studies showed that treatment with oroxylin A in combination with TNFα decreased AML cell population and prolonged survival in NOD/SCID mice with xenografts of primary AML cells. Overall, our results indicate that oroxylin A is able to inhibit the negative effects of TNFα for AML therapy, suggesting that combination of oroxylin A and TNFα have the potential to delay growth or eliminate the abnormal leukemic cells, thus representing a promising strategy for AML treatment.


Asunto(s)
Antineoplásicos/farmacología , Flavonoides/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/farmacología , Animales , Western Blotting , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Ensayo de Cambio de Movilidad Electroforética , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Transducción de Señal/efectos de los fármacos
17.
J Cell Mol Med ; 22(4): 2117-2130, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29377576

RESUMEN

Acute myeloid leukaemia (AML) comprises a range of disparate genetic subtypes, involving complex gene mutations and specific molecular alterations. Post-translational modifications of specific proteins influence their translocation, stability, aggregation and even leading disease progression. Therapies that target to post-translational modification of specific proteins in cancer cells represent a novel treatment strategy. Non-homogenous subcellular distribution of PLSCR1 is involved in the primary AML cell differentiation. However, the nuclear translocation mechanism of PLSCR1 remains poorly understood. Here, we leveraged the observation that nuclear translocation of PLSCR1 could be induced during wogonoside treatment in some primary AML cells, despite their genetic heterogeneity that contributed to the depalmitoylation of PLSCR1 via acyl protein thioesterase 1 (APT-1), an enzyme catalysing protein depalmitoylation. Besides, we found a similar phenomenon on another AML-related protein, N-RAS. Wogonoside inhibited the palmitoylation of small GTPase N-RAS and enhanced its trafficking into Golgi complex, leading to the inactivation of N-RAS/RAF1 pathway in some primary AML cells. Taken together, our findings provide new insight into the mechanism of wogonoside-induced nuclear translocation of PLSCR1 and illuminate the influence of N-RAS depalmitoylation on its Golgi trafficking and RAF1 signalling inactivation in AML.


Asunto(s)
Flavanonas/farmacología , GTP Fosfohidrolasas/metabolismo , Glucósidos/farmacología , Leucemia Mieloide Aguda/metabolismo , Lipoilación , Proteínas de la Membrana/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Humanos , Leucemia Mieloide Aguda/patología , Lipoilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Tioléster Hidrolasas/metabolismo , Células Tumorales Cultivadas
18.
Arch Toxicol ; 90(6): 1507-22, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26104856

RESUMEN

GATA-1, a zinc finger transcription factor, has been demonstrated to play a key role in the progression of leukemia. In this study, we investigate the effects of wogonoside, a naturally bioactive flavonoid derived from Scutellaria baicalensis Georgi, on cell growth and cell cycle in chronic myeloid leukemia (CML) cells, and uncover its underlying mechanisms. The experimental design comprised CML cell lines K562, imatinib-resistant K562 (K562r) cells, and primary CML cells, treated in vitro or in vivo, respectively, with wogonoside; growth and cell cycle were then evaluated. We found that wogonoside could induce growth inhibition and G0/G1 cell cycle arrest in both normal and K562r cells. Wogonoside promotes the expression of GATA-1 and facilitates the binding to methyl ethyl ketone (MEK) and p21 promoter, thus inhibiting MEK/extracellular signal-regulated kinase signaling and cell cycle checkpoint proteins, including CDK2, CDK4, cyclin A, and cyclin D1, and increasing p21 expression. Furthermore, in vivo studies showed that administration of wogonoside decreased CML cells and prolonged survival in NOD/SCID mice with CML cell xenografts. In conclusion, these results clearly revealed the inhibitory effect of wogonoside on the growth in CML cells and suggested that wogonoside may act as a promising drug for the treatment of imatinib-resistant CML.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Flavanonas/farmacología , Factor de Transcripción GATA1/metabolismo , Glucósidos/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Antineoplásicos Fitogénicos/aislamiento & purificación , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Flavanonas/aislamiento & purificación , Glucósidos/aislamiento & purificación , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Unión Proteica , Scutellaria baicalensis/química
19.
Med Sci Monit ; 21: 1604-10, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26049398

RESUMEN

BACKGROUND: The aim of this study was to investigate the anticancer effect and related mechanisms of gambogic acid (GA), a traditional Chinese medicine, on human leukemia cell line K562, together with the effect on bone marrow mononuclear cells (MNCs). MATERIAL AND METHODS: K562 cells and MNCs were treated with various concentrations and treatment times of GA. Inhibitory rate was detected by use of the Cell Counting Kit-8 (CCK-8) assay. Apoptosis was analyzed by morphological detection, Annexin-V/PI doubling staining, and TUNEL assays. The expression changes of pivotal proteins were evaluated by Western blotting. RESULTS: GA not only suppressed cell proliferation, but also induced apoptosis of K562 cells in a dose-dependent manner. While it did not significantly inhibit cell proliferation of MNCs, it did induce apoptosis in a dose-dependent manner. CCK-8 assay revealed that the proliferation of K562 cells was significantly inhibited when the concentration of GA was more than 0.5 µM. Morphological detection showed the nuclei became denser and more intense orange in K562 cells after GA treatment compared with the untreated group. The expression levels of BCL-2, nuclear factor-κB (NF-κB), c-myc, phosphatidylinositol3-kinase (PI3K), and phosphorylation of serine-threonine kinase (p-AKT) were down-regulated by GA. CONCLUSIONS: GA significantly suppressed the proliferation of K562 cells, but has less effect on MNCs. The inhibition of K562 cells proliferation and apoptosis induced by GA might be related to the down-regulation of BCL-2, NF-κB, c-myc, PI3K, and p-AKT.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Leucemia/tratamiento farmacológico , Xantonas/farmacología , Anexina A5 , Western Blotting , Recuento de Células , Humanos , Etiquetado Corte-Fin in Situ , Técnicas In Vitro , Células K562 , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo
20.
Tumour Biol ; 35(7): 6757-62, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24719189

RESUMEN

This study aims to investigate the prognostic significance of the MYC protein expression in diffuse large B cell lymphoma (DLBCL) patients treated with RCHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone). A total of 60 patients with DLBCL from 2008 to 2013 were included. Formalin-fixed, paraffin-embedded DLBCL samples were analyzed for MYC protein expression and divided into high or low MYC group. The MYC protein expression and the international prognostic variables were evaluated. The high MYC protein expression predicted a shorter 3-year estimated overall survival (OS) and progression-free survival (PFS) versus the low MYC protein expression (57 % vs. 96 %, P < 0.001 and 50 % vs. 96 %, P = 0.001, respectively). Multivariate analysis confirmed the prognostic significance of the MYC protein expression for both OS (HR, 11.862; 95 % CI, 1.462-96.218; P = 0.021) and PFS (HR, 6.073; 95 % CI, 1.082-34.085; P = 0.040). MYC protein expression with International Prognostic Index (IPI) score distinguished patients into three risk groups with different 3-year OS rates (χ (2) 23.079; P < 0.001) and distinct 3-year PFS rates (χ (2) 15.862; P < 0.001). This study suggests that the MYC protein expression is an important inferior prognostic factor for survival in patients with DLBCL treated with RCHOP. The combinative model with IPI score and MYC protein expression could stratify DLBCL patients into prognostically relevant subgroups more effectively than either the IPI or the MYC alone.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Proteínas Proto-Oncogénicas c-myc/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales de Origen Murino/administración & dosificación , Ciclofosfamida/administración & dosificación , Supervivencia sin Enfermedad , Doxorrubicina/administración & dosificación , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Linfoma de Células B Grandes Difuso/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Prednisona/administración & dosificación , Pronóstico , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Rituximab , Vincristina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA