Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 182(1): 245-261.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649877

RESUMEN

Genomic studies of lung adenocarcinoma (LUAD) have advanced our understanding of the disease's biology and accelerated targeted therapy. However, the proteomic characteristics of LUAD remain poorly understood. We carried out a comprehensive proteomics analysis of 103 cases of LUAD in Chinese patients. Integrative analysis of proteome, phosphoproteome, transcriptome, and whole-exome sequencing data revealed cancer-associated characteristics, such as tumor-associated protein variants, distinct proteomics features, and clinical outcomes in patients at an early stage or with EGFR and TP53 mutations. Proteome-based stratification of LUAD revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Further, we nominated potential drug targets and validated the plasma protein level of HSP 90ß as a potential prognostic biomarker for LUAD in an independent cohort. Our integrative proteomics analysis enables a more comprehensive understanding of the molecular landscape of LUAD and offers an opportunity for more precise diagnosis and treatment.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Proteómica , Adenocarcinoma del Pulmón/genética , Pueblo Asiatico/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Sistemas de Liberación de Medicamentos , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Mutación/genética , Estadificación de Neoplasias , Fosfoproteínas/metabolismo , Análisis de Componente Principal , Pronóstico , Proteoma/metabolismo , Resultado del Tratamiento , Proteína p53 Supresora de Tumor/genética
2.
Mol Psychiatry ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459194

RESUMEN

Cognitive and behavioral rigidity are observed in various psychiatric diseases, including in autism spectrum disorder (ASD). However, the underlying mechanism remains to be elucidated. In this study, we found that neuroligin-3 (NL3) R451C knockin mouse model of autism (KI mice) exhibited deficits in behavioral flexibility in choice selection tasks. Single-unit recording of medium spiny neuron (MSN) activity in the nucleus accumbens (NAc) revealed altered encoding of decision-related cue and impaired updating of choice anticipation in KI mice. Additionally, fiber photometry demonstrated significant disruption in dynamic mesolimbic dopamine (DA) signaling for reward prediction errors (RPEs), along with reduced activity in medial prefrontal cortex (mPFC) neurons projecting to the NAc in KI mice. Interestingly, NL3 re-expression in the mPFC, but not in the NAc, rescued the deficit of flexible behaviors and simultaneously restored NAc-MSN encoding, DA dynamics, and mPFC-NAc output in KI mice. Taken together, this study reveals the frontostriatal circuit dysfunction underlying cognitive inflexibility and establishes a critical role of the mPFC NL3 deficiency in this deficit in KI mice. Therefore, these findings provide new insights into the mechanisms of cognitive and behavioral inflexibility and potential intervention strategies.

3.
Proteomics ; : e2300350, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491406

RESUMEN

Lysine acylation has been extensively investigated due to its regulatory role in a diverse range of biological functions across prokaryotic and eukaryotic species. In-depth acylomic profiles have the potential to enhance comprehension of the biological implications of organisms. However, the extent of research on global acylation profiles in microorganisms is limited. Here, four lysine acylomes were conducted in Bacillus thuringiensis by using the LC-MS/MS based proteomics combined with antibody-enrichment strategies, and a total of 3438 acetylated sites, 5797 propionylated sites, 1705 succinylated sites, and 925 malonylated sites were identified. The motif analysis of these modified proteins revealed a high conservation of glutamate in acetylation and propionylation, whereas such conservation was not observed in succinylation and malonylation modifications. Besides, conservation analysis showed that homologous acylated proteins in Bacillus subtilis and Escherichia coli were connected with ribosome and aminoacyl-tRNA biosynthesis. Further biological experiments showed that lysine acylation lowered the RNA binding ability of CodY and impaired the in vivo protein activity of MetK. In conclusion, our study expanded the current understanding of the global acylation in Bacillus, and the comparative analysis demonstrated that shared acylation proteins could play important roles in regulating both metabolism and RNA transcription progression.

4.
Clin Proteomics ; 21(1): 2, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182978

RESUMEN

Despite recent innovations in imaging and genomic screening promotes advance in diagnosis and treatment of lung adenocarcinoma (LUAD), there remains high mortality of LUAD and insufficient understanding of LUAD biology. Our previous study performed an integrative multi-omic analysis of LUAD, filling the gap between genomic alterations and their biological proteome effects. However, more detailed molecular characterization and biomarker resources at proteome level still need to be uncovered. In this study, a quantitative proteomic experiment of patient-derived benign lung disease samples was carried out. After that, we integrated the proteomic data with previous dataset of 103 paired LUAD samples. We depicted the proteomic differences between non-cancerous and tumor samples and among diverse pathological subtypes. We also found that up-regulated mitophagy was a significant characteristic of early-stage LUAD. Additionally, our integrative analysis filtered out 75 potential prognostic biomarkers and validated two of them in an independent LUAD serum cohort. This study provided insights for improved understanding proteome abnormalities of LUAD and the novel prognostic biomarker discovery offered an opportunity for LUAD precise management.

5.
EMBO Rep ; 23(10): e54543, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35993189

RESUMEN

Regulation of mRNA translation is essential for brain development and function. Translation elongation factor eEF2 acts as a molecular hub orchestrating various synaptic signals to protein synthesis control and participates in hippocampus-dependent cognitive functions. However, whether eEF2 regulates other behaviors in different brain regions has been unknown. Here, we construct a line of Eef2 heterozygous (HET) mice, which show a reduction in eEF2 and protein synthesis mainly in excitatory neurons of the prefrontal cortex. The mice also show lower spine density, reduced excitability, and AMPAR-mediated synaptic transmission in pyramidal neurons of the medial prefrontal cortex (mPFC). While HET mice exhibit normal learning and memory, they show defective social behavior and elevated anxiety. Knockdown of Eef2 in excitatory neurons of the mPFC specifically is sufficient to impair social novelty preference. Either chemogenetic activation of excitatory neurons in the mPFC or mPFC local infusion of the AMPAR potentiator PF-4778574 corrects the social novelty deficit of HET mice. Collectively, we identify a novel role for eEF2 in promoting prefrontal AMPAR-mediated synaptic transmission underlying social novelty behavior.


Asunto(s)
Factor 2 de Elongación Peptídica/metabolismo , Corteza Prefrontal , Transmisión Sináptica , Animales , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Factores de Elongación de Péptidos/metabolismo , Corteza Prefrontal/fisiología , Conducta Social , Transmisión Sináptica/fisiología
6.
Acta Pharmacol Sin ; 45(6): 1305-1315, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38383757

RESUMEN

Histone deacetylase inhibitors (HDACis) are important drugs for cancer therapy, but the indistinct resistant mechanisms of solid tumor therapy greatly limit their clinical application. In this study we conducted HDACi-perturbated proteomics and phosphoproteomics analyses in HDACi-sensitive and -resistant cell lines using a tandem mass tag (TMT)-based quantitative proteomic strategy. We found that the ribosome biogenesis proteins MRTO4, PES1, WDR74 and NOP16 vital to tumorigenesis might regulate the tumor sensitivity to HDACi. By integrating HDACi-perturbated protein signature with previously reported proteomics and drug sensitivity data, we predicted and validated a series of drug combination pairs potentially to enhance the sensitivity of HDACi in diverse solid tumor. Functional phosphoproteomic analysis further identified the kinase PDK1 and ROCK as potential HDACi-resistant signatures. Overall, this study reveals the potential HDACi-resistant signatures and may provide promising drug combination strategies to attenuate the resistance of solid tumor to HDACi.


Asunto(s)
Resistencia a Antineoplásicos , Inhibidores de Histona Desacetilasas , Neoplasias , Proteómica , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
7.
J Oral Rehabil ; 51(2): 278-286, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37830131

RESUMEN

BACKGROUND: Previous studies investigated the associations between obesity and temporomandibular disorders (TMDs), but the evidence for the causal inferences was unclear. OBJECTIVE: We aimed to investigate the causal link between life course adiposity and TMDs. METHODS: Mendelian randomization (MR) studies were performed using genetic instruments for birth weight (BW) (N = 261 932), childhood body mass index (BMI) (N = 39 620), childhood body size (N = 454 718), adult BMI (N = 99 998), body fat percentage (N = 454 633) and TMDs (N = 211 023). We assessed the overall effect of each life course adiposity factor via inverse-variance weighted (IVW), weighted median, and MR-Egger methods and performed extensive sensitivity analyses. Additionally, multivariable MR was conducted to evaluate the direct and indirect effects of childhood BMI on TMDs while accounting for BW and adult BMI, and vice versa. RESULTS: Univariable MR analyses revealed a causal effect of low childhood adiposity on an increased risk of TMDs (childhood BMI: IVW OR: 0.65, 95% CI: 0.54-0.78, p < .001; childhood body size: IVW OR: 0.56, 95% CI: 0.43-0.73, p < .001). No causal association existed between genetically predicted BW, adult BMI, or body fat percentage and TMDs. In the multivariable MR analyses, the effects of childhood BMI on TMDs occurrence remained significant and direct, even after adjusting for BW and adult BMI (multivariable IVW OR: 0.78, 95% CI: 0.61-0.99, p = .048). No pleiotropy and heterogeneity were detected (p > .05). CONCLUSION: Low childhood BMI might causally increase the risk of TMDs through a direct pathway.


Asunto(s)
Adiposidad , Análisis de la Aleatorización Mendeliana , Adulto , Humanos , Adiposidad/genética , Índice de Masa Corporal , Acontecimientos que Cambian la Vida , Obesidad , Polimorfismo de Nucleótido Simple , Recién Nacido , Niño
8.
J Oral Rehabil ; 51(5): 817-826, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38205584

RESUMEN

BACKGROUND: As one of the most important indicators of socioeconomic status, educational attainment (EA) exhibits a strong association with temporomandibular disorders (TMDs). Despite this link, there is a lack of evidence regarding the causal role of EA in either facilitating or preventing TMDs. OBJECTIVE: This study aimed to investigate the causal effect of education on TMDs and explore potential mediating pathways. METHODS: Utilizing summary statistics from genome-wide association studies on years of schooling (N = 766 345) and TMDs (N = 211 023), we conducted Mendelian randomization (MR) to assess the overall effect of education. Additionally, a two-step MR approach was employed to evaluate 30 potential mediators and calculate the mediation proportions in the association. Comprehensive sensitivity analyses were used to verify the robustness, heterogeneity, and pleiotropy. RESULTS: Univariable MR analyses revealed a causal effect of lower EA on an increased risk of TMDs (OR: 0.53, 95% CI: 0.43-0.66, p < .001). Five out of 30 modifiable factors were identified as causal mediators in the associations of EA with TMDs, including feeling nervous (mediation proportion: 11.6%), feeling tense (10.2%), depression (9.6%), feeling worry (7.6%) and daily smoking (8.9%). Meanwhile, no pleiotropy was detected in the analyses (p > .05). CONCLUSION: Our findings supported that higher EA has a protective effect on the onset of TMDs, with partial mediation by psychological disorders and daily smoking. Interventions on these factors thus have the potential of substantially reducing the burden of TMDs attributed to low education.


Asunto(s)
Estudio de Asociación del Genoma Completo , Trastornos de la Articulación Temporomandibular , Humanos , Análisis de la Aleatorización Mendeliana , Escolaridad , Emociones , Trastornos de la Articulación Temporomandibular/epidemiología , Trastornos de la Articulación Temporomandibular/genética , Polimorfismo de Nucleótido Simple
9.
Molecules ; 29(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930857

RESUMEN

A straightforward and efficient methodology has been developed for the synthesis of 3-cyano-2-pyridones via the C-C and C-N bond formation processes. A total of 51 diverse 3-cyano-2-pyridone derivatives were obtained in moderate to excellent yields. This reaction featured advantages such as a metal-free process, wide functional group tolerance, simple operation, and mild conditions. A plausible mechanism for the reaction was proposed. 3-cyano-2-pyridones as ricinine analogues for insecticidal properties were evaluated, and the compound 3ci (LC50 = 2.206 mg/mL) showed the best insecticidal property.

10.
BMC Oral Health ; 24(1): 247, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368359

RESUMEN

BACKGROUND: The role of thyroid health in temporomandibular disorders (TMDs) has been emphasized in observational studies. However, whether the causation exists is unclear, and controversy remains about which specific disorder, such as hypothyroidism or hyperthyroidism, is destructive in TMDs. This study aims to investigate the overall and specific causal effects of various thyroid conditions on TMDs. METHODS: Mendelian randomization (MR) studies were performed using genetic instruments for thyrotropin (TSH, N = 119,715), free thyroxine (fT4, N = 49,269), hypothyroidism (N = 410,141), hyperthyroidism (N = 460,499), and TMDs (N = 211,023). We assessed the overall effect of each thyroid factor via inverse-variance weighted (IVW), weighted median, and MR-Egger methods, and performed extensive sensitivity analyses. Additionally, multivariable MR was conducted to evaluate the direct or indirect effects of hypothyroidism on TMDs whilst accounting for TSH, fT4 and hyperthyroidism, and vice versa. RESULTS: Univariable MR analyses revealed a causal effect of hypothyroidism on an increased risk of TMDs (IVW OR: 1.12, 95% CI: 1.05-1.20, p = 0.001). No significant association between genetically predicted hyperthyroidism, TSH, or fT4 and TMDs. In the multivariable MR analyses, the effects of hypothyroidism on TMDs occurrence remained significant even after adjSusting for TSH, fT4 and hyperthyroidism (multivariable IVW OR: 1.10, 95% CI: 1.03-1.17, p = 0.006). No pleiotropy and heterogeneity were detected in the analyses (p > 0.05). CONCLUSIONS: Hypothyroidism might causally increase the risk of TMDs through a direct pathway, highlighting the critical role of managing thyroid health in the prevention of TMDs. Clinicians should give heightened attention to patients with hypothyroidism when seeking medical advice for temporomandibular discomfort. However, caution is warranted due to the potential confounders, pleiotropy, and selection bias in the MR study.


Asunto(s)
Hipertiroidismo , Hipotiroidismo , Trastornos de la Articulación Temporomandibular , Humanos , Causalidad , Estudio de Asociación del Genoma Completo , Hipertiroidismo/complicaciones , Hipertiroidismo/genética , Hipotiroidismo/complicaciones , Hipotiroidismo/genética , Trastornos de la Articulación Temporomandibular/genética , Tirotropina , Análisis de la Aleatorización Mendeliana
11.
J Physiol ; 601(17): 3905-3920, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37431690

RESUMEN

Kinesin family member 2C (KIF2C)/mitotic centromere-associated kinesin (MCAK), is thought to be oncogenic as it is involved in tumour progression and metastasis. Moreover, it also plays a part in neurodegenerative conditions like Alzheimer's disease and psychiatric disorders such as suicidal schizophrenia. Our previous study conducted on mice demonstrated that KIF2C is widely distributed in various regions of the brain, and is localized in synaptic spines. Additionally, it regulates microtubule dynamic properties through its own microtubule depolymerization activity, thereby affecting AMPA receptor transport and cognitive behaviour in mice. In this study, we show that KIF2C regulates the transport of mGlu1 receptors in Purkinje cells by binding to Rab8. KIF2C deficiency in Purkinje cells results in abnormal gait, reduced balance ability and motor incoordination in male mice. These data suggest that KIF2C is essential for maintaining normal transport and synaptic function of mGlu1 and motor coordination in mice. KEY POINTS: KIF2C is localized in synaptic spines of hippocampus neurons, and regulates excitatory transmission, synaptic plasticity and cognitive behaviour. KIF2C is extensively expressed in the cerebellum, and we investigated its functions in development and synaptic transmission of cerebellar Purkinje cells. KIF2C deficiency in Purkinje cells alters the expression of metabotropic glutamate receptor 1 (mGlu1) and the AMPA receptor GluA2 subunit at Purkinje cell synapses, and changes excitatory synaptic transmission, but not inhibitory transmission. KIF2C regulates the transport of mGlu1 receptors in Purkinje cells by binding to Rab8. KIF2C deficiency in Purkinje cells affects motor coordination, but not social behaviour in male mice.


Asunto(s)
Células de Purkinje , Receptores de Glutamato Metabotrópico , Masculino , Animales , Ratones , Células de Purkinje/fisiología , Receptores AMPA/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Cerebelo/metabolismo , Proteínas Portadoras/metabolismo , Sinapsis/metabolismo , Proteínas de Ciclo Celular/metabolismo
12.
J Neurochem ; 164(6): 786-812, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36695027

RESUMEN

mRNA translation is critical for regulation of various aspects of the nervous system. Ionotropic glutamate and gamma-aminobutyric acid type A (GABAA ) receptors are fundamental synaptic ion channels that control excitatory and inhibitory synaptic transmission, respectively. However, little is known about the translation of these receptors during brain development and function. By utilizing polysome profiling, a powerful tool for investigating translational machinery and mRNA translational states, we characterized the translational patterns of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-d-aspartate (NMDA), and GABAA receptor subunits, and compared them with total mRNA and protein levels during mouse brain development, in different brain regions, and in response to behavioral stimuli. Most of the receptor subunits exhibited developmental changes at total mRNA, translation, and protein levels, among which translation of Gria1, Gria2, Grin1, Grin2a, Gabra1, and Gabrg2 contributed greatly to their protein levels. Most of the receptor subunits also displayed differentiated levels of total mRNA, translation, and protein in the prefrontal cortex and hippocampus, among which translation of Gria1, Gria2, Gabrb2, and Gabrg2 contributed to their protein levels. Finally, we showed that acute foot shock stress had a rapid influence in both the prefrontal cortex and hippocampus, with the prefrontal cortex displaying more changes at translational and protein levels. Notably, Grin2a is translationally repressed by stress which was followed by a decrease of GluN2A protein in both brain regions. Together, this study provides a new understanding of the translational patterns of critical ionotropic synaptic receptors during brain development and behavioral stress.


Asunto(s)
Ácido Glutámico , Receptores de GABA , Ratones , Animales , Ácido Glutámico/metabolismo , Receptores de GABA/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Encéfalo/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , ARN Mensajero/metabolismo
13.
Neurobiol Dis ; 186: 106273, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37648036

RESUMEN

Epilepsy is one of the most common neurological disorders. Neuroinflammation involving the activation of microglia and astrocytes constitutes an important and common mechanism in epileptogenesis. Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, non-selective cation channel that plays pathological roles in various inflammation-related diseases. Our previous study demonstrated that Trpm2 knockout exhibits therapeutic effects on pilocarpine-induced glial activation and neuroinflammation. However, whether TRPM2 in microglia and astrocytes plays a common pathogenic role in this process and the underlying molecular mechanisms remained undetermined. Here, we demonstrate a previously unknown role for microglial TRPM2 in epileptogenesis. Trpm2 knockout in microglia attenuated kainic acid (KA)-induced glial activation, inflammatory cytokines production and hippocampal paroxysmal discharges, whereas Trpm2 knockout in astrocytes exhibited no significant effects. Furthermore, we discovered that these therapeutic effects were mediated by upregulated autophagy via the adenosine monophosphate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in microglia. Thus, our findings highlight an important deleterious role of microglial TRPM2 in temporal lobe epilepsy.


Asunto(s)
Microglía , Canales Catiónicos TRPM , Humanos , Proteínas Quinasas Activadas por AMP , Enfermedades Neuroinflamatorias , Canales Catiónicos TRPM/genética , Serina-Treonina Quinasas TOR , Autofagia , Canales de Calcio
14.
Molecules ; 28(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37446710

RESUMEN

Glioblastoma (GBM) is a deadly brain tumor characterized by signaling dysregulation and aberrant cell cycle control. The CDK4/6-Rb axis is dysregulated in approximately 80% of all GBM cases. In this study, the anti-GBM effect of a novel pyrimidin-2-amine, LH20 was evaluated in vitro using the primary GBM cell lines U87MG and U251. GBM cells were administered LH20 at concentrations of 0.1, 1, 4, 8, 10, 20, 100, and 200 µM for 24 and 48 h, and the proliferation rate was evaluated using a CCK8 assay. Migration, apoptosis, and cell cycle were also assessed using a wound healing assay, Annexin V-FITC/PI apoptosis assay, and cell cycle staining, respectively. The targets of LH20 were predicted using SwissTargetPrediction and molecular docking. Western blotting analysis was performed to confirm the anti-GBM mechanism of LH20. We found that at concentrations of 4, 8, and 10 µM, LH20 significantly inhibited the proliferation and migration of U87MG and U251 cells, induced late phase apoptosis, promoted tumor cell necrosis, and arrested the G2/M phase of the cell cycle. LH20 also inhibited CDK4 and CDK6 activities by decreasing the phosphorylation of Rb. Our results suggest LH20 as a potential treatment strategy against GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Proliferación Celular , Simulación del Acoplamiento Molecular , Glioblastoma/metabolismo , Puntos de Control del Ciclo Celular , Apoptosis , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina
15.
Molecules ; 28(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37764382

RESUMEN

An efficient, straightforward, and metal-free methodology to rapidly access functionalised pyrazolo-[1,5-c]quinazolinones via a [3 + 2] dipolar cycloaddition and regioselective ring expansion process was developed. The synthesised compounds were characterised by methods such as NMR, HRMS, and HPLC. The in vitro antiproliferative activity against A549 cells (non-small cell lung cancer) was significant for compounds 4i, 4m, and 4n with IC50 values of 17.0, 14.2, and 18.1 µM, respectively. In particular, compounds 4t and 4n showed inhibitory activity against CDK9/2. Predicted biological target and molecular modelling studies suggest that the compound 4t may target CDKs for antitumour effects. The synthesised derivatives were considered to have moderate drug-likeness and sufficient safety in silico. In summary, a series of pyrazolo-[1,5-c]quinazolinone derivatives with antitumour activity is reported for the first time. We provide not only a simple and efficient synthetic method but also helpful lead compounds for the further development of novel cyclin-dependent kinase (CDK) inhibitors.

16.
BMC Oral Health ; 23(1): 499, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464321

RESUMEN

BACKGROUND: Observational studies have shown that body mass index (BMI) is highly correlated with the occurrence of temporomandibular disorders (TMDs). However, these studies failed to present a causal relationship. Thus, we aimed to performed a Mendelian randomization (MR) study to investigate causality between BMI and TMDs. METHODS: We performed a two-sample bidirectional MR analysis using large-scale genome-wide association studies (GWAS). Data were obtained from a large-scale BMI dataset (N = 322,154), TMDs dataset (N = 134,280). The causal effects were estimated with inverse-variance weighted (IVW) method, MR Egger, weighted median. Sensitivity analyses were implemented with Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis and the funnel plot. RESULTS: In the forward MR analysis, a genetic prediction of low BMI was causally associated with a higher risk of TMDs (IVW OR: 0.575, 95% CI: 0.415-0.798, p: 0.001). Similar results were obtained using other complementary methods (MR Egger OR: 0.270, 95% CI: 0.104-0.698, p: 0.009; weighted median OR: 0.496, 95% CI: 0.298-0.826, p: 0.007). In the reverse MR results, TMDs was shown to have no significant effect on BMI (all p > 0.05). No pleiotropy and heterogeneity were detected in the bidirectional analysis (p > 0.05). CONCLUSION: A lower BMI might be causally associated with increased risk of TMDs, supporting the importance of weight control for the prevention of TMDs. Clinicians should pay more attention to the low-BMI patients among those seeking medical advice due to temporomandibular joint discomfort.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Trastornos de la Articulación Temporomandibular , Humanos , Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Trastornos de la Articulación Temporomandibular/epidemiología , Trastornos de la Articulación Temporomandibular/genética , Articulación Temporomandibular
17.
J Proteome Res ; 21(4): 953-964, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35172096

RESUMEN

Targeting histone epigenetic modification is an important strategy for anticancer therapy. Histone deacetylase inhibitors (HDACis) have been clinically approved in the treatment of diverse hematological cancers, but mechanisms of drug resistance and poor therapeutic efficacy in solid malignancies remain largely unknown. In this study, we applied a mass spectrometry-based quantitative proteomic strategy to investigate the molecular differences in HDACi vorinostat (SAHA) sensitive and resistant cell lines. The proteomic results revealed that the glycolysis pathway was highly enriched after vorinostat treatment in the resistant cell line, leading to the prediction of a new drug combination, SAHA and hexokinase inhibitor (2-deoxyglucose). The efficacy of this combination was further verified in several solid tumor cell lines. Quantitative proteomics revealed that alterations in the transcription process and protein homeostasis could play roles in the synergetic utilization of these two compounds. Our study showed the application of proteomics in elucidating the drug mechanism and predicting drug combination and the potential of expanding the utilization of HDACi.


Asunto(s)
Proteoma , Proteómica , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Proteoma/genética , Vorinostat/farmacología
18.
Mol Psychiatry ; 26(5): 1505-1519, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31388105

RESUMEN

Genetic studies of autism spectrum disorder (ASD) have revealed multigene variations that converge on synaptic dysfunction. DOCK4, a gene at 7q31.1 that encodes the Rac1 guanine nucleotide exchange factor Dock4, has been identified as a risk gene for ASD and other neuropsychiatric disorders. However, whether and how Dock4 disruption leads to ASD features through a synaptic mechanism remain unexplored. We generated and characterized a line of Dock4 knockout (KO) mice, which intriguingly displayed a series of ASD-like behaviors, including impaired social novelty preference, abnormal isolation-induced pup vocalizations, elevated anxiety, and perturbed object and spatial learning. Mice with conditional deletion of Dock4 in hippocampal CA1 recapitulated social preference deficit in KO mice. Examination in CA1 pyramidal neurons revealed that excitatory synaptic transmission was drastically attenuated in KO mice, accompanied by decreased spine density and synaptic content of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)- and NMDA (N-methyl-D-aspartate)-type glutamate receptors. Moreover, Dock4 deficiency markedly reduced Rac1 activity in the hippocampus, which resulted in downregulation of global protein synthesis and diminished expression of AMPA and NMDA receptor subunits. Notably, Rac1 replenishment in the hippocampal CA1 of Dock4 KO mice restored excitatory synaptic transmission and corrected impaired social deficits in these mice, and pharmacological activation of NMDA receptors also restored social novelty preference in Dock4 KO mice. Together, our findings uncover a previously unrecognized Dock4-Rac1-dependent mechanism involved in regulating hippocampal excitatory synaptic transmission and social behavior.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Proteínas Activadoras de GTPasa/genética , Neuropéptidos/genética , Receptores de N-Metil-D-Aspartato/genética , Proteína de Unión al GTP rac1/genética , Animales , Proteínas Activadoras de GTPasa/deficiencia , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica
19.
J Org Chem ; 87(5): 3661-3667, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35029390

RESUMEN

A one-pot strategy for α-keto amide bond formation have been developed by using ynamides as coupling reagents under extremely mild reaction conditions. Diversely structural α-ketoamides were afforded in up to 98% yield for 36 examples. This reaction features advantages such as practical coupling procedure, wide functional group tolerance, and extremely mild conditions and has potential applications in synthetic and medicinal chemistry.


Asunto(s)
Aminas , Cetoácidos , Aminas/química , Indicadores y Reactivos , Oxidación-Reducción
20.
Bioorg Med Chem ; 29: 115856, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199201

RESUMEN

NIK is a critical regulatory protein of the non-classical NF-kB pathway, and its dysregulated activation has been proved to be one of the pathogenic factors in a variety of autoimmune diseases and inflammatory diseases. Nevertheless, its corresponding development of inhibitors faces many obstacles, including the lack of structure types of known inhibitors, immature activity evaluation methods of compounds in vitro. In this study, a series of quinoline derivatives were obtained through rational design and chemical synthesis. Among them, the representative compounds 17c and 24c have excellent inhibitory activities on LPS-induced macrophage (J774) nitric oxide release and anti-Con A-stimulated primary T cell proliferation. This evaluation method has good universality and overcomes the obstacles mentioned above, which are faced by the current inhibitor research to a certain extent. Besides, the compound's toxicity against the growth of T cells under non-stress conditions was evaluated, for the first time, as an indicator for the investigation to avoid potential safety risks. Pharmacokinetic properties evaluation of the less toxic compound 24c confirmed its good metabolic behavior (especially oral properties, F% = 21.7%), and subsequent development value.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Descubrimiento de Drogas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Quinolinas/farmacología , Linfocitos T/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Proteínas Serina-Treonina Quinasas/metabolismo , Quinolinas/síntesis química , Quinolinas/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Quinasa de Factor Nuclear kappa B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA