Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Microbiol ; 80(12): 368, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831112

RESUMEN

A sedentary lifestyle affects the diversity and composition of the gut microbiota, but previous studies have mainly focused on bacteria instead of fungi. Here, we compared both the fecal bacterial and fungal microbiota compositions and functions in sedentary persons and controls. Subjects from the China Railway Corporation, including 99 inspectors and 88 officials, were enrolled in our study. Fecal microbiota communities were analyzed using 16S rRNA gene sequencing for bacteria and ITS sequencing for fungi. We found that the diversity of the gut microbiota of the sedentary group was significantly lower than that of the control group (P < 0.05). The sedentary group had a higher abundance of Firmicutes, a lower abundance of Actinobacteria and Proteobacteria and a higher abundance of Ascomycota, and a lower abundance of Basidiomycota. Furthermore, functional prediction analysis of the fungal microbiota revealed more L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde, more phospholipid remodeling (phosphatidylethanolamine, yeast), and more L-tyrosine degradation I, as well as less pentose phosphate pathway (non-oxidative branch), less adenosine nucleotide biosynthesis and less L-valine biosynthesis in the sedentary group (P < 0.05). Thus, a sedentary lifestyle changes the composition and function of the gut microbiota. It may change the pentose phosphate pathway (non-oxidative branch), nucleic acid and amino acid biosynthesis and phospholipid metabolism in fungi.


Asunto(s)
Microbioma Gastrointestinal , Micobioma , Humanos , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Conducta Sedentaria , Bacterias , Hongos/genética , Fosfolípidos/metabolismo
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(11): 1137-1142, 2023 Nov 15.
Artículo en Zh | MEDLINE | ID: mdl-37990458

RESUMEN

OBJECTIVES: To study the effect of vaccination on the short-term risk of immunoglobulin A vasculitis (IgAV) in children. METHODS: A retrospective analysis was conducted on the general data and the vaccination history within one year prior to onset in children with IgAV hospitalized in the Children's Hospital Affiliated to Zhengzhou University from November 2021 to January 2023. Vaccine exposure rates in the risk period (3 months prior to IgAV onset) and the control period were compared by autocontrol-case crossover analysis, and the odds ratio and 95% confidence interval (95%CI) were calculated. A sensitivity analysis for the one-month and two-month risk periods was conducted. RESULTS: A total of 193 children with IgAV were included, with a median age of 7.0 years. Among the 193 children, 36 (18.7%) received at least one dose of the vaccine within 1 year prior to IgAV onset, and 14 (7.3%) received at least one dose of the vaccine during the 3-month risk period. Compared to the unvaccinated IgAV group, the vaccinated IgAV group had a significantly younger age of onset (P<0.05). There were no significant differences in the proportions of children with gastrointestinal involvement, renal involvement, and joint involvement between the two groups (P>0.05). The odds ratio for developing IgAV after receiving any type of vaccine within 3 months prior to IgAV onset was 2.08 (95%CI: 0.82-5.27, P>0.05). Further sensitivity analysis for the 1-month and 2-month risk periods demonstrated that the odds ratios for developing IgAV after receiving any type of vaccine were 2.74 (95%CI: 0.72-10.48, P>0.05) and 2.72 (95%CI: 0.95-7.77, P>0.05), respectively. CONCLUSIONS: Vaccination dose not increase the risk of IgAV, nor does it exacerbate clinical symptoms in children with IgAV.


Asunto(s)
Vasculitis por IgA , Vacunas , Humanos , Niño , Estudios Retrospectivos , Inmunoglobulina A , Vacunación
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(9): 966-970, 2023.
Artículo en Zh | MEDLINE | ID: mdl-37718404

RESUMEN

OBJECTIVES: To study the relationship between coronavirus disease 2019 (COVID-19) vaccination and the risk of immune thrombocytopenia (ITP). METHODS: A retrospective analysis was conducted on children aged 3-17 years with newly diagnosed ITP who were hospitalized in Children's Hospital Affiliated to Zhengzhou University from November 2021 to December 2022. Clinical data and COVID-19 vaccination status were compared among three groups: ITP patients vaccinated within 12 weeks before onset, vaccinated more than 12 weeks before onset, and unvaccinated. Changes in serum immunoglobulin and complement levels were analyzed among five groups: ITP patients vaccinated <4 weeks before onset, 4-<8 weeks before onset, 8-<12 weeks before onset, ≥12 weeks before onset, and unvaccinated. A case-control design was used to estimate the risk of ITP: 387 children aged 3-17 years with fractures hospitalized during the same period in the emergency department of the hospital were selected as the control group, and the exposure to COVID-19 vaccination within 12, 8, and 4 weeks before onset in ITP children was compared to estimate the risk of ITP. RESULTS: Among 129 ITP children, there were no statistically significant differences in age, gender, rate of preceding infections, absolute platelet count at initial diagnosis, absolute lymphocyte count at initial diagnosis, bleeding score, positive anti-nuclear antibody rate, absolute platelet count after 4 days of treatment, recurrence rate, and proportion of patients with disease duration ≥3 months among the three groups vaccinated within 12 weeks before onset, vaccinated more than 12 weeks before onset, and unvaccinated (P>0.05). There was a statistically significant difference in serum immunoglobulin G, immunoglobulin A, and complement component 3 levels among the groups vaccinated <4 weeks, 4-<8 weeks, 8-<12 weeks, and ≥12 weeks before onset, and unvaccinated (P<0.05). The risk estimation results showed that COVID-19 vaccination within 12 weeks, 8 weeks, and 4 weeks before onset did not increase the risk of ITP (P>0.05). CONCLUSIONS: COVID-19 vaccination does not increase the risk of ITP.

4.
Hepatology ; 68(3): 897-917, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29573006

RESUMEN

Nonalcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis (HS), insulin resistance (IR), and inflammation, poses a high risk of cardiometabolic disorders. Ubiquitin specific protease 4 (USP4), a deubiquitinating enzyme, is pivotally involved in regulating multiple inflammatory pathways; however, the role of USP4 in NAFLD is unknown. Here, we report that USP4 expression was dramatically down-regulated in livers from NAFLD patients and different NAFLD mouse models induced by high-fat diet (HFD) or genetic deficiency (ob/ob) as well as in palmitate-treated hepatocytes. Hepatocyte-specific USP4 depletion exacerbated HS, IR, and inflammatory response in HFD-induced NAFLD mice. Conversely, hepatic USP4 overexpression notably alleviated the pathological alterations in two different NAFLD models. Mechanistically, hepatocyte USP4 directly bound to and deubiquitinated transforming growth factor-ß activated kinase 1 (TAK1), leading to a suppression of the activation of downstream nuclear factor kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) cascades, which, in turn, reversed the disruption of insulin receptor substrate/protein kinase B/glycogen synthase kinase 3 beta (IRS-AKT-GSK3ß) signaling. In addition, USP4-TAK1 interaction and subsequent TAK1 deubiquitination were required for amelioration of metabolic dysfunctions. Conclusion: Collectively, the present study provides evidence that USP4 functions as a pivotal suppressor in NAFLD and related metabolic disorders. (Hepatology 2018; 00:000-000).


Asunto(s)
Hígado/enzimología , Enfermedad del Hígado Graso no Alcohólico/enzimología , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Hepatocitos/enzimología , Humanos , Resistencia a la Insulina , Leptina/deficiencia , Sistema de Señalización de MAP Quinasas , Masculino , Ratones Transgénicos , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/enzimología
5.
J Pineal Res ; 67(2): e12579, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30958896

RESUMEN

Exercise-induced physiological hypertrophy provides protection against cardiovascular disease, whereas disease-induced pathological hypertrophy leads to heart failure. Emerging evidence suggests pleiotropic roles of melatonin in cardiac disease; however, the effects of melatonin on physiological vs pathological cardiac hypertrophy remain unknown. Using swimming-induced physiological hypertrophy and pressure overload-induced pathological hypertrophy models, we found that melatonin treatment significantly improved pathological hypertrophic responses accompanied by alleviated oxidative stress in myocardium but did not affect physiological cardiac hypertrophy and oxidative stress levels. As an important mediator of melatonin, the retinoid-related orphan nuclear receptor-α (RORα) was significantly decreased in human and murine pathological hypertrophic cardiomyocytes, but not in swimming-induced physiological hypertrophic murine hearts. In vivo and in vitro loss-of-function experiments indicated that RORα deficiency significantly aggravated pathological cardiac hypertrophy, and notably weakened the anti-hypertrophic effects of melatonin. Mechanistically, RORα mediated the cardioprotection of melatonin in pathological hypertrophy mainly by transactivation of manganese-dependent superoxide dismutase (MnSOD) via binding to the RORα response element located in the promoter region of the MnSOD gene. Furthermore, MnSOD overexpression reversed the pro-hypertrophic effects of RORα deficiency, while MnSOD silencing abolished the anti-hypertrophic effects of RORα overexpression in pathological cardiac hypertrophy. Collectively, our findings provide the first evidence that melatonin exerts an anti-hypertrophic effect on pathological but not physiological cardiac hypertrophy via alleviating oxidative stress through transactivation of the antioxidant enzyme MnSOD in a RORα-dependent manner.


Asunto(s)
Cardiomegalia/metabolismo , Melatonina/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Transducción de Señal , Superóxido Dismutasa/metabolismo , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Modelos Animales de Enfermedad , Ratones , Ratones Mutantes , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Superóxido Dismutasa/genética
6.
J Pineal Res ; 67(2): e12581, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31009101

RESUMEN

Rupture of vulnerable plaques is the main trigger of acute cardio-cerebral vascular events, but mechanisms responsible for transforming a stable atherosclerotic into a vulnerable plaque remain largely unknown. Melatonin, an indoleamine hormone secreted by the pineal gland, plays pleiotropic roles in the cardiovascular system; however, the effect of melatonin on vulnerable plaque rupture and its underlying mechanisms remains unknown. Here, we generated a rupture-prone vulnerable carotid plaque model induced by endogenous renovascular hypertension combined with low shear stress in hypercholesterolemic ApoE-/- mice. Melatonin (10 mg/kg/d by oral administration for 9 weeks) significantly prevented vulnerable plaque rupture, with lower incidence of intraplaque hemorrhage (42.9% vs. 9.5%, P = 0.014) and of spontaneous plaque rupture with intraluminal thrombus formation (38.1% vs. 9.5%, P = 0.029). Mechanistic studies indicated that melatonin ameliorated intraplaque inflammation by suppressing the differentiation of intraplaque macrophages toward the proinflammatory M1 phenotype, and circadian nuclear receptor retinoid acid receptor-related orphan receptor-α (RORα) mediated melatonin-exerted vasoprotection against vulnerable plaque instability and intraplaque macrophage polarization. Further analysis in human monocyte-derived macrophages confirmed the role of melatonin in regulating macrophage polarization by regulating the AMPKα-STATs pathway in a RORα-dependent manner. In summary, our data provided the first evidence that melatonin-RORα axis acts as a novel endogenous protective signaling pathway in the vasculature, regulates intraplaque inflammation, and stabilizes rupture-prone vulnerable plaques.


Asunto(s)
Aterosclerosis/metabolismo , Macrófagos/metabolismo , Melatonina/farmacología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Placa Aterosclerótica/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/patología , Humanos , Macrófagos/patología , Masculino , Ratones , Ratones Noqueados para ApoE , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología , Transducción de Señal/genética
7.
Exp Cell Res ; 371(2): 301-310, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30098335

RESUMEN

Myocardial ischemia/reperfusion (MI/R) injury induces excessive cellular apoptosis and contributes significantly to final infarct size. We previously demonstrated that a nuclear receptor, Farnesoid X receptor (FXR), plays a crucial role in mediating myocardial apoptosis. The FXR functions are regulated by post translational modifications (PTM). However, whether the proapoptotic effect of FXR in MI/R injury is regulated by PTM remains unclear. Here, we aimed to study the effect of SUMOylation, a PTM involved in the pathogenesis of MI/R injury per se, on the proapoptotic effect of FXR in MI/R injury. We observed that FXR could be SUMOylated in heart tissues, and FXR SUMOylation levels were downregulated in ischemia reperfused myocardium. By overexpression of SUMOylation-defective FXR mutant, it was demonstrated that decreased SUMOylation augmented the detrimental effect of FXR, via activation of mitochondrial apoptosis pathway and autophagy dysfunction in MI/R injury. Further mechanistic studies suggested that decreased SUMOylation levels increased the transcription activity of FXR, and the subsequently upregulated FXR target gene SHP mediated the proapoptotic effects of FXR. Taken together, we provided the first evidence that the cardiac effects of FXR could be regulated by SUMOylation, and that manipulating FXR SUMOylation levels may hold therapeutic promise for constraining MI/R injury.


Asunto(s)
Apoptosis/genética , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Procesamiento Proteico-Postraduccional , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Autofagia , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Sumoilación , Transcripción Genética
8.
Sensors (Basel) ; 18(4)2018 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-29661999

RESUMEN

For GPS medium-long baseline real-time kinematic (RTK) positioning, the troposphere parameter is introduced along with coordinates, and the model is ill-conditioned due to its strong correlation with the height parameter. For BeiDou Navigation Satellite System (BDS), additional difficulties occur due to its special satellite constellation. In fact, relative zenith troposphere delay (RZTD) derived from high-precision empirical zenith troposphere models can be introduced. Thus, the model strength can be improved, which is also called the RZTD-constrained RTK model. In this contribution, we first analyze the factors affecting the precision of BDS medium-long baseline RTK; thereafter, 15 baselines ranging from 38 km to 167 km in different troposphere conditions are processed to assess the performance of RZTD-constrained RTK. Results show that the troposphere parameter is difficult to distinguish from the height component, even with long time filtering for BDS-only RTK. Due to the lack of variation in geometry for the BDS geostationary Earth orbit satellite, the long convergence time of ambiguity parameters may reduce the height precision of GPS/BDS-combined RTK in the initial period. When the RZTD-constrained model was used in BDS and GPS/BDS-combined situations compared with the traditional RTK, the standard deviation of the height component for the fixed solution was reduced by 52.4% and 34.0%, respectively.

9.
Biochim Biophys Acta Mol Basis Dis ; 1863(8): 1991-2000, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27825849

RESUMEN

Retinoid-related orphan receptor α (RORα), a member of the metabolic nuclear receptor superfamily, plays a vital regulatory role in circadian rhythm and metabolism. Here, we investigated the role of RORα in high-fat diet (HFD)-induced cardiac impairments and the underlying mechanisms involved. RORα-deficient stagger mice (sg/sg) and wild type (WT) littermates were fed with either standard diet or HFD. At 20weeks after HFD treatment, RORα deficiency resulted in significantly decreased body weight gain, improved dyslipidemia and ameliorated insulin resistance (evaluated by blood biochemical and glucose/insulin tolerance tests) compared with WT control. However, compared with HFD-treated WT mice, HFD-treated sg/sg mice exhibited significantly augmented myocardial hypertrophy, cardiac fibrosis (wheat germ agglutinin, masson trichrome and sirius red staining) and cardiac dysfunction (echocardiography and hemodynamics). Mechanistically, RORα deficiency impaired mitochondrial biogenesis and function. Additionally, RORα deficiency resulted in inhibition of the AMPK-PGC1α signaling pathway. In contrast, cardiomyocyte-specific RORα overexpression ameliorated myocardial hypertrophy, fibrosis and dysfunction by restoring AMPK-PGC1α signaling, and subsequently normalizing mitochondrial biogenesis. These findings demonstrated for the first time that nuclear receptor RORα deficiency aggravated HFD-induced myocardial dysfunction at least in part by impairing mitochondrial biogenesis in association with disrupting AMPK-PGC1α signaling. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren and Megan Yingmei Zhang.


Asunto(s)
Grasas de la Dieta/efectos adversos , Cardiopatías , Miocardio/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/deficiencia , Biogénesis de Organelos , Transducción de Señal , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Grasas de la Dieta/farmacología , Cardiopatías/inducido químicamente , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/patología , Resistencia a la Insulina , Ratones , Ratones Mutantes , Miocardio/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
10.
J Pineal Res ; 62(3)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27862268

RESUMEN

Diabetic cardiomyopathy is a major complication that significantly contributes to morbidity and mortality in diabetics with few therapies. Moreover, antidiabetic drugs reported inconsistent or even adverse cardiovascular effects, suggesting that it is important to exploit novel therapeutic targets against diabetic cardiomyopathy. Here, we observed that the nuclear melatonin receptor, the retinoic acid-related orphan receptor-α (RORα), was downregulated in diabetic hearts. By utilizing a mouse line with RORα disruption, we demonstrated that RORα deficiency led to significantly augmented diastolic dysfunction and cardiac remodeling induced by diabetes. Microscopic and molecular analyses further indicated that the detrimental effects of RORα deficiency were associated with aggravated myocardial apoptosis, autophagy dysfunction, and oxidative stress by disrupting antioxidant gene expression. By contrast, restoration of cardiac RORα levels in transgenic mice significantly improved cardiac functional and structural parameters at 8 weeks after diabetes induction. Consistent with genetic manipulation, pharmacological activation of RORα by melatonin and SR1078 (a synthetic agonist) showed beneficial effects against diabetic cardiomyopathy, while the RORα inhibitor SR3335 significantly exacerbated cardiac impairments in diabetic mice. Collectively, these findings suggest that cardiac-targeted manipulation of nuclear melatonin receptor RORα may hold promise for delaying diabetic cardiomyopathy development.


Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Miocardio/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Melatonina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autofagia/efectos de los fármacos , Autofagia/genética , Benzamidas/farmacología , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Ratones , Ratones Mutantes , Miocardio/patología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Receptores de Melatonina/genética , Sulfonamidas/farmacología , Tiofenos/farmacología
11.
J Pineal Res ; 60(3): 313-26, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26797926

RESUMEN

Circadian rhythm disruption or decrease in levels of circadian hormones such as melatonin increases ischemic heart disease risk. The nuclear melatonin receptors RORs are pivotally involved in circadian rhythm regulation and melatonin effects mediation. However, the functional roles of RORs in the heart have never been investigated and were therefore the subject of this study on myocardial ischemia/reperfusion (MI/R) injury pathogenesis. RORα and RORγ subtypes were detected in the adult mouse heart, and RORα but not RORγ was downregulated after MI/R. To determine the pathological consequence of MI/R-induced reduction of RORα, we subjected RORα-deficient staggerer mice and wild-type (WT) littermates to MI/R injury, resulting in significantly increased myocardial infarct size, myocardial apoptosis and exacerbated contractile dysfunction in the former. Mechanistically, RORα deficiency promoted MI/R-induced endoplasmic reticulum stress, mitochondrial impairments, and autophagy dysfunction. Moreover, RORα deficiency augmented MI/R-induced oxidative/nitrative stress. Given the emerging evidence of RORα as an essential melatonin effects mediator, we further investigated the RORα roles in melatonin-exerted cardioprotection, in particular against MI/R injury, which was significantly attenuated in RORα-deficient mice, but negligibly affected by cardiac-specific silencing of RORγ. Finally, to determine cell type-specific effects of RORα, we generated mice with cardiomyocyte-specific RORα overexpression and they were less vulnerable to MI/R injury. In summary, our study provides the first direct evidence that the nuclear melatonin receptor RORα is a novel endogenous protective receptor against MI/R injury and an important mediator of melatonin-exerted cardioprotection; melatonin-RORα axis signaling thus appears important in protection against ischemic heart injury.


Asunto(s)
Melatonina/farmacología , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Ratones , Ratones Transgénicos , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo
12.
Sensors (Basel) ; 16(12)2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27929390

RESUMEN

As the field of high-precision applications based on carriers continues to expand, the development of low-cost, small, modular receivers and their application in diverse scenarios and situations with complex data quality has increased the requirements of carrier-phase data preprocessing. A new geometry-based cycle slip detection and repair method based on Global Position System (GPS) + BeiDou Navigation Satellite System (BDS) is proposed. The method uses a Time-differenced Carrier Phase (TDCP) model, which eliminates the Inner-System Bias (ISB) between GPS and BDS, and it is conducive to the effective combination of GPS and BDS. It avoids the interference of the noise of the pseudo-range with cycle slip detection, while the cycle slips are preserved as integers. This method does not limit the receiver frequency number, and it is applicable to single-frequency data. The process is divided into two steps to detect and repair cycle slip. The first step is cycle slip detection, using the Improved Local Analysis Method (ILAM) to find satellites that have cycle slips; The second step is to repair the cycle slips, including estimating the float solution of changes in ambiguities at the satellites that have cycle slips with the least squares method and the integer solution of the cycle slips by rounding. In the process of rounding, in addition to the success probability, a decimal test is carried out to validate the result. Finally, experiments with filed test data are carried out to prove the effectiveness of this method. The results show that the detectable cycle slips number with GPS + BDS is much greater than that with GPS. The method can also detect the non-integer outliers while fixing the cycle slip. The maximum decimal bias in repair is less than that with GPS. It implies that this method takes full advantages of multi-system.

13.
Cardiovasc Diabetol ; 13: 149, 2014 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-25416469

RESUMEN

BACKGROUND: Liver X receptor (LXR) plays a critical regulatory role in metabolism and inflammation, and has been demonstrated to be involved in cardiovascular physiology/pathology. In the present study, we investigated the effect of GW3965, a potent LXR agonist, on diabetic cardiomyopathy (DCM) in type 2 diabetic db/db mice. METHODS AND RESULTS: Non-diabetic db/+ mice and diabetic db/db mice received either vehicle or LXR agonist GW3965 for 12 weeks. Systemic insulin resistance was evaluated by glucose tolerance test and homeostasis model assessment for insulin resistance. Endpoint cardiac function was assessed by echocardiography and catheterization. Ventricular tissue was collected for histology and gene/protein expression analysis. Untreated db/db diabetic mice exhibited diastolic dysfunction with adverse structural remodeling (including myocardial fibrosis and increased apoptosis). Treatment with GW3965 remarkably attenuated myocardial dysfunction and structural remodeling in diabetic db/db mice. Mechanistically, GW3965 restored Akt phosphorylation and inhibited MAP kinases phosphorylation, and reduced oxidative/nitrative stress and inflammation response in the diabetic myocardium. CONCLUSIONS: Our data demonstrate that GW3965 exerts a cardioprotective effect against DCM by (at least in part) attenuating insulin resistance, modulating Akt and MAP kinases pathways, and reducing oxidative/nitrative stress and inflammatory response. These findings strongly suggest that LXR agonist may have therapeutic potential in treating DCM.


Asunto(s)
Benzoatos/farmacología , Bencilaminas/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/tratamiento farmacológico , Corazón/efectos de los fármacos , Receptores Nucleares Huérfanos/agonistas , Animales , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Resistencia a la Insulina/fisiología , Receptores X del Hígado , Masculino , Ratones , Ratones Noqueados , Miocardio/metabolismo , Estrés Oxidativo/efectos de los fármacos
14.
Phytomedicine ; 125: 155325, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295663

RESUMEN

BACKGROUND: Sepsis and its associated heart failure are among the leading causes of death. Gramine, a natural indole alkaloid, can be extracted from a wide variety of raw plants, and it exhibits therapeutic potential in pathological cardiac hypertrophy. However, the effect of gramine on inflammatory cardiomyopathy, particularly sepsis-induced myocardial injury, remains an unexplored area. PURPOSE: To determine the role of gramine in sepsis-induced myocardial dysfunction and explore its underlying mechanism. STUDY DESIGN AND METHODS: In mice, sepsis was established by intraperitoneally injecting lipopolysaccharide (LPS, 10 mg/kg). Subsequently, the effects of gramine administration (50 or 100 mg/kg) on LPS-triggered cardiac dysfunction in mice were investigated. For in vitro studies, isolated primary cardiomyocytes were used to assess the effect of gramine (25 or 50 µM) on LPS-induced apoptosis and inflammation. Additionally, molecular docking, co-immunoprecipitation and ubiquitination analyzes were conducted to explore the underlying mechanisms. RESULTS: Gramine visibly ameliorated sepsis-induced cardiac dysfunction, inflammatory response, and mortality in vivo. Moreover, it significantly alleviated LPS-induced apoptotic and inflammatory responses in vitro. Furthermore, target prediction for gramine using the SuperPred website indicated that the nuclear factor NF-κB p105 subunit was one of the molecules ranked in priority order with a high model accuracy and a high probability score. Molecular docking studies demonstrated that gramine effectively docked to the death domain of NF-κB p105. Mechanistic studies revealed that gramine suppressed the processing of NF-κB p105 to p50 by inhibiting NF-κB p105 ubiquitination. Additionally, the protective effect of gramine on cardiac injury was almost abolished by overexpressing NF-κB p105. CONCLUSION: Gramine is a promising bioactive small molecule for treating sepsis-induced myocardial dysfunction, which acts by docking to NF-κB p105 and inhibiting NF-κB p105 ubiquitination, thus preventing its processing to NF-κB p50. Therefore, gramine holds potential as a clinical drug for treating myocardial depression during sepsis.


Asunto(s)
Cardiomiopatías , Cardiopatías , Sepsis , Animales , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Alcaloides Indólicos , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/etiología , Ubiquitinación , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo
15.
Int J Biol Sci ; 20(5): 1796-1814, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481818

RESUMEN

Appropriate fibrosis is required to prevent subsequent adverse remodeling and heart failure post myocardial infarction (MI), and cardiac fibroblasts (CFs) play a critical role during the process. Carbonic anhydrase 3 (CAR3) is an important mediator in multiple biological processes besides its CO2 hydration activity; however, the role and underlying mechanism of CAR3 on cardiac repair post MI injury remains unknown. Here, we found that CAR3 expression was up-regulated in cardiac tissue in infarct area at the reparative phase of MI, with a peak at 7 days post MI. The upregulation was detected mainly on fibroblast instead of cardiomyocyte, and primary cardiac fibroblasts treated with TGF-ß1 recaptured our observation. While CAR3 deficiency leads to weakened collagen density, enlarged infarct size and aggravated cardiac dysfunction post-MI. In fibroblast, we observed that CAR3 deficiency restrains collagen synthesis, cell migration and gel contraction of cardiac fibroblasts, whereas overexpression of CAR3 in CFs improves wound healing and cardiac fibroblast activation. Mechanistically, CAR3 stabilizes Smad7 protein via modulating its acetylation, which dampens phosphorylation of Smad2 and Smad3, thus inhibiting fibroblast transformation. In contrast, inhibition of Smad7 acetylation with C646 blunts CAR3 deficiency induced suppression of fibroblast activation and impaired cardiac healing. Our data demonstrate a protective role of CAR3 in cardiac wound repair post MI via promoting fibroblasts activation through Smad7-TGF-ß/Smad2/3 signaling pathway.


Asunto(s)
Anhidrasas Carbónicas , Infarto del Miocardio , Humanos , Miocardio/metabolismo , Proteína smad7/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Transducción de Señal/genética , Miocitos Cardíacos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Colágeno/metabolismo , Anhidrasas Carbónicas/metabolismo , Fibroblastos/metabolismo
16.
Phytomedicine ; 114: 154779, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37023527

RESUMEN

BACKGROUND: Gramine, also named 3-(N,N-dimethylaminomethyl) indole, is a indole alkaloid. It is mainly extracted from various natural raw plants. Despite being the simplest 3-aminomethylindole, Gramine has broad pharmaceutical and therapeutic effects, such as vasodilatation, antioxidation, mitochondrial bioenergetics-related effects, and angiogenesis via modulation of TGFß signaling. However, there is little information available about Gramine's role in heart disease, especially pathological cardiac hypertrophy. PURPOSE: To investigate Gramine's effect on pathological cardiac hypertrophy and clarify the mechanisms behind its action. METHODS: In the in vitro experiment, Gramine (25 µM or 50 µM) was used to investigate its role in Angiotensin II-induced primary neonatal rat cardiomyocytes (NRCMs) hypertrophy. In the in vivo experiment, Gramine (50 mg/kg or 100 mg/kg) was administrated to investigate its role in transverse aortic constriction (TAC) surgery mice. Additionally, we explored the mechanisms underlying these roles through Western blot, Real-time PCR, genome-wide transcriptomic analysis, chromatin immunoprecipitation and molecular docking studies. RESULTS: The in vitro data demonstrated that Gramine treatment obviously improved primary cardiomyocyte hypertrophy induced by Angiotensin II, but had few effects on the activation of fibroblasts. The in vivo experiments indicated that Gramine significantly mitigated TAC-induced myocardial hypertrophy, interstitial fibrosis and cardiac dysfunction. Mechanistically, RNA sequencing and further bioinformatics analysis demonstrated that transforming growth factor ß (TGFß)-related signaling pathway was enriched significantly and preferentially in Gramine-treated mice as opposed to vehicle-treated mice during pathological cardiac hypertrophy. Moreover, this cardio-protection of Gramine was found to mainly involved in TGFß receptor 1 (TGFBR1)- TGFß activated kinase 1 (TAK1)-p38 MAPK signal cascade. Further exploration showed that Gramine restrained the up-regulation of TGFBR1 by binding to Runt-related transcription factor 1 (Runx1), thereby alleviating pathological cardiac hypertrophy. CONCLUSION: Our findings provided a substantial body of evidence that Gramine possessed a potential druggability in pathological cardiac hypertrophy via suppressing the TGFBR1-TAK1-p38 MAPK signaling axis through interaction with transcription factor Runx1.


Asunto(s)
Angiotensina II , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Ratas , Ratones , Animales , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Angiotensina II/farmacología , Simulación del Acoplamiento Molecular , Cardiomegalia/metabolismo , Miocitos Cardíacos , Transducción de Señal , Alcaloides Indólicos/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
17.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(11): 1335-1342, 2022 Nov 15.
Artículo en Zh | MEDLINE | ID: mdl-36382449

RESUMEN

Objective: A multicenter, randomized, single-blind, parallel-controlled noninferiority study was used to evaluate the short-term safety and effectiveness of domestic polyether-ether-ketone (PEEK) suture anchor for rotator cuff repair by comparing with the imported PEEK suture anchor commonly used in clinical practice. Methods: A total of 59 patients with rotator cuff tears who were admitted between May 2019 and October 2019 were selected as the research objects. Among them, 3 patients were excluded because they did not meet the selection criteria, and 1 patient withdrew from the study because of serious adverse events. A total of 55 patients were included in the study. They were randomly divided into trial group ( n=27) and control group ( n=28). The trial group used PEEK suture anchors produced from REJOIN Company, and the control group used PEEK suture anchors from American Arthrex Company. Two patients in control group were lost to follow-up. Twenty-seven patients in trial group and 26 patients in control group were included in the final quantitative analysis. There was no significant difference ( P>0.05) in gender, age, disease duration, side and sizes of rotator cuff tears, composition ratio of patients with type 2 diabetes, and preoperative American Shoulder and Elbow Surgeons (ASES) score, Constant-Murley score, University of California at Los Angeles (UCLA) score, and visual analogue scale (VAS) score. The patients were followed up regularly after operation. The postoperative follow-up included safety evaluation (complications, anchor position, and anchor bone reaction) and effectiveness evaluation (shoulder joint function and pain scores, rotator cuff integrity based on Sugaya classification criteria). Results: The operations in both groups were successfully completed, and there was no complication related to the operation and suture anchor. All incisions healed by first intention. There was no significant difference in follow-up time between trial group [(5.85±0.77) months] and control group [(5.96±0.72) months] ( t=0.535, P=0.595). MRI examination indicated that the repaired tendons were fixed and the anchors did not get loose or torn. At 1 day, 3 months, and 6 months after operation, there was no patient with grade 3-4 anchor bone reaction in the two groups, and there was no significant difference in the bone reaction grading between groups ( P>0.05). After operation, the VAS scores of the two groups gradually decreased, and the ASES scores, Constant-Murley scores, and UCLA scores gradually increased, and there were significant differences between groups at each time point ( P<0.05). There was no significant difference between groups at different time points ( P>0.05). There was no significant difference in Sugaya classification of rotator cuff integrity at 1 day, 3 months, and 6 months after operation between groups ( P>0.05). Conclusion: The short-term safety and effectiveness of domestic PEEK suture anchors in rotator cuff tear repair are not significant different from those of imported PEEK suture anchors commonly used in clinical practice.


Asunto(s)
Diabetes Mellitus Tipo 2 , Lesiones del Manguito de los Rotadores , Humanos , Anclas para Sutura , Lesiones del Manguito de los Rotadores/cirugía , Manguito de los Rotadores/cirugía , Artroscopía , Método Simple Ciego , Rango del Movimiento Articular , Cetonas/uso terapéutico , Polietilenglicoles/uso terapéutico , Imagen por Resonancia Magnética , Éteres , Resultado del Tratamiento
18.
Front Cardiovasc Med ; 9: 930077, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990959

RESUMEN

Background: Several observational studies have identified that handgrip strength was inversely associated with cardiovascular diseases (CVDs). Nevertheless, causality remains controversial. We conducted Mendelian randomization (MR) analysis to examine whether handgrip strength and risk of CVDs are causally associated. Methods: We identified 160 independent single nucleotide polymorphisms (SNPs) for right-hand grip strength and 136 independent SNPs for left-hand grip strength at the genome-wide significant threshold (P < 5 × 10-8) from UK Biobank participants and evaluated these in relation to risk of CVDs. MR estimates was calculated using the inverse-variance weighted (IVW) method and multiple sensitivity analysis was further conducted. Results: Genetical liability to handgrip strength was significantly associated with coronary artery disease (CAD) and myocardial infarction (MI), but not stroke, hypertension, or heart failure. Additionally, there was significant association between right-hand grip strength and atrial fibrillation (OR, 0.967; 95% CI, 0.950-0.984; p = 0.000222), however, suggestive significance was found between left-hand grip strength and atrial fibrillation (OR, 0.977; 95% CI, 0.957-0.998; p = 0.033). Results were similar in several sensitivity analysis. Conclusion: Our study provides support at the genetic level that handgrip strength is negatively associated with the risk of CAD, MI, and atrial fibrillation. Specific handgrip strength interventions on CVDs warrant exploration as potential CVDs prevention measures.

19.
Front Immunol ; 13: 841141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720294

RESUMEN

Background & Aims: Eosinophils are the main inflammatory effector cells that damage gastrointestinal tissue in eosinophilic gastrointestinal diseases (EGIDs). Activation of the OX40 pathway aggravates allergic diseases, such as asthma, but it is not clear whether OX40 is expressed in eosinophils to regulate inflammation in EGIDs. In this study, we assessed the expression and effect of OX40 on eosinophils in WT and Ox40-/- eosinophilic gastroenteritis (EGE) mice. Methods: Eosinophil infiltration, ovalbumin (OVA)-specific Ig production, OX40 expression and inflammatory factor levels in the intestine and bone marrow (BM) were investigated to evaluate inflammation. Results: We confirmed that OVA-challenged mice produced high levels of Ox40, Mbp, Ccl11, Il5, Il4, Il13, and Il6 mRNA and a low level of Ifng mRNA in the intestine. Increased eosinophils were observed in intestinal and lymph tissues, accompanied by significantly upregulated OX40 and Type 2 cytokine production in eosinophils of EGE mice. Ox40 deficiency ameliorated OVA-induced inflammation, eosinophil infiltration, and cytokine production in the intestine. Consistently, Ox40-/- eosinophils exhibited decreased proliferation and proinflammatory function. The stimulation of the agonistic anti-OX40 antibody, OX86, promoted the effect of OX40 on eosinophils. The present study also showed that Ox40 deficiency dampened the Traf2/6-related NF-κB signaling pathway in eosinophils. Conclusions: OX40 may play a critical role in the progress of OVA-induced EGE by promoting the maturation and function of eosinophils via the Traf2/6-related NF-κB signaling pathway.


Asunto(s)
Eosinófilos , FN-kappa B , Animales , Enteritis , Eosinofilia , Gastritis , Inflamación/metabolismo , Ratones , FN-kappa B/metabolismo , Ovalbúmina , ARN Mensajero/metabolismo , Receptores OX40 , Factor 2 Asociado a Receptor de TNF/metabolismo
20.
Front Pharmacol ; 9: 438, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29773990

RESUMEN

Atherosclerosis is a chronic disease comprising intima malfunction and arterial inflammation. Recent studies have demonstrated that autophagy could inhibit inflammatory response in atherosclerosis and exert subsequent atheroprotective effects. Our previous study also demonstrated the role of autophagy in the inhibition of inflammation by atorvastatin in vitro. Therefore, in the present study, we aimed to determine whether atorvastatin could upregulate autophagy to inhibit inflammatory cytokines secretion, lipid accumulation, and improve vulnerable plaque stability, both in vitro and in vivo. First, we established a vulnerable atherosclerotic plaque mouse model through partial ligation of left common carotid artery and left renal artery to explore the effect of atorvastatin on vulnerable plaques. The results showed that atorvastatin could enhance the stability of vulnerable atherosclerotic plaques and reduce the lesion area in the aorta. Atorvastatin could also inhibit NLRP3 inflammasome activation and inflammatory cytokines, such as IL-1ß, TNF-α, and IL-18 secretion in vivo. Atorvastatin treatment upregulated the expression of autophagy-related protein microtubule-associated protein light chain (LC3B) and downregulated the expression of SQSTM1/p62, which suggested that autophagy was activated in vulnerable plaques. Transmission electron microscopy further demonstrated the atorvastatin-induced increase in autophagy activity in vulnerable atherosclerotic plaques. We employed oxidized low-density lipoprotein (ox-LDL) to stimulate RAW264.7 cells with atorvastatin, which showed that atorvastatin could attenuate lipid deposition, ameliorate inflammation, inhibit NLRP3 inflammasome activation, and enhance autophagy in vitro. All these beneficial effects were abolished by 3-methyladenine treatment, an autophagy inhibitor. Atorvastatin also significantly inhibited the phosphorylation of mTOR, which strongly suggested the involvement of the mTOR pathway. Our study proposed a new role for atorvastatin as an autophagy inducer to exert anti-inflammatory and atheroprotective effects, to stabilize vulnerable atherosclerotic plaques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA