Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(12): e202116041, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-34994039

RESUMEN

Distinguishing the operating mechanisms of nano- and micromotors powered by chemical gradients, i.e. "autophoresis", holds the key for fundamental and applied reasons. In this article, we propose and experimentally confirm that the speeds of a self-diffusiophoretic colloidal motor scale inversely to its population density but not for self-electrophoretic motors, because the former is an ion source and thus increases the solution ionic strength over time while the latter does not. They also form clusters in visually distinguishable and quantifiable ways. This pair of rules is simple, powerful, and insensitive to the specific material composition, shape or size of a colloidal motor, and does not require any measurement beyond typical microscopy. These rules are not only useful in clarifying the operating mechanisms of typical autophoretic micromotors, but also in predicting the dynamics of unconventional ones that are yet to be experimentally realized, even those involving enzymes.


Asunto(s)
Electroforesis
2.
J Am Chem Soc ; 143(31): 12154-12164, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34339185

RESUMEN

A popular principle in designing chemical micromachines is to take advantage of asymmetric chemical reactions such as the catalytic decomposition of H2O2. Contrary to intuition, we use Janus micromotors half-coated with platinum (Pt) or catalase as an example to show that this ingredient is not sufficient in powering a micromotor into self-propulsion. In particular, by annealing a thin Pt film on a SiO2 microsphere, the resulting microsphere half-decorated with discrete Pt nanoparticles swims ∼80% more slowly than its unannealed counterpart in H2O2, even though they both catalytically produce comparable amounts of oxygen. Similarly, SiO2 microspheres half-functionalized with the enzyme catalase show negligible self-propulsion despite high catalytic activity toward decomposing H2O2. In addition to highlighting how surface morphology of a catalytic cap enables/disables a chemical micromotor, this study offers a refreshed perspective in understanding how chemistry powers nano- and microscopic objects (or not): our results are consistent with a self-electrophoresis mechanism that emphasizes the electrochemical decomposition of H2O2 over nonelectrochemical pathways. More broadly, our finding is a critical piece of the puzzle in understanding and designing nano- and micromachines, in developing capable model systems of active colloids, and in relating enzymes to active matter.

3.
Soft Matter ; 16(26): 6082-6090, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32568346

RESUMEN

The emerging field of active matter, and its subset active colloid, is in great need of good model systems consisting of moving entities that are uniform and highly tunable. In this article, we address this challenge by introducing core-shell SiO2-TiO2 microspheres, prepared by chemically coating a thin layer of TiO2 on an inert core, that are highly monodisperse in size (polydispersity 4.1%) and regular in shape (circularity 0.93). Compared with similar samples prepared by the classic sol-gel method, Janus TiO2-Pt active colloids prepared with core-shell TiO2 spheres move faster and boast a much clearer Janus interface. Moreover, a unique feature of these core-shell TiO2 microspheres is their great tunability in the colloid size, shell thickness, and even the type of the core particle. These advantages are highlighted in two examples, one demonstrating a TiO2-Pt active colloid with a magnetic core that enables magnetic manipulation, and the other demonstrating the collective expansion and contraction of a uniform cluster of core-shell TiO2 colloids under UV light illumination. We believe that TiO2 microspheres produced by this core-shell technique compare favorably with many other types of active colloids being employed as model systems, and thus open up many research possibilities.

4.
Materials (Basel) ; 16(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37629931

RESUMEN

The explosion products, such as shock waves, fragments and heat energy formed by explosion, act on the plate structure, which may cause structural damage, material failure and even phase transformation of material. In this paper, the damage mechanism and protective effect of near-field blast load on sandwich structure based on foam-nickel core material were studied. Firstly, the near-field explosion test was conducted to investigate the blast response of the foam-nickel sandwich structure subjected to blast shock from 8701 explosive at near-field position. The deformation characteristics and stress history of the sandwich structure on the acting location of blast load were carefully investigated via experimental methods. A finite element model of near-field explosion was established for effective numerical modelling of the dynamic behaviour of the sandwich structure using the explicit dynamics software ANSYS/LS-DYNA for more comprehensive investigations of the blast shock response of the sandwich structure. The finite element model is reasonable and validated by mesh independence verification and comparing the simulated response behaviour to that from the experimental results for the sandwich structure subjected to near-field blast load. On this basis, the damage mechanism and protection effect of the near-field explosion impact on foam-nickel cores with different density and porosity are simulated more systematically. The investigated results from the experiments and a series of numerical simulations show the large deformation effect due to the extensive energy absorption, which suggests that the sandwich structure based on foam-nickel core material may be expected to become a new choice of protective structure under near-field blast load.

5.
ACS Nano ; 17(5): 4729-4739, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36815761

RESUMEN

The ability to steer micromotors in specific directions and at precise speeds is highly desired for their use in complex environments. However, a generic steering strategy that can be applied to micromotors of all types and surface coatings is yet to be developed. Here, we report that ultrasound of ∼100 kHz can spin a spherical micromotor so that it turns left or right when moving forward, or that it moves in full circles. The direction and angular speeds of their spinning and the radii of circular trajectories are precisely tunable by varying ultrasound voltages and frequencies, as well as particle properties such as its radius, materials, and coating thickness. Such spinning is hypothesized to originate from the circular microstreaming flows localized around a solid microsphere vibrating in ultrasound. In addition to causing a micromotor to spin, such streaming flows also helped release cargos from a micromotor during a capture-transport-release mission. Localized microstreaming does not depend on or interference with a specific propulsion mechanism and can steer a wide variety of micromotors. This work suggests that ultrasound can be used to steer microrobots in complex, biologically relevant environments as well as to steer microorganisms and cells.

6.
Chem Commun (Camb) ; 57(77): 9902-9905, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34494625

RESUMEN

Efficient fuels are critical for designing photocatalytic micromotors with high performance. We discover that 0.5 mM of triethanolamine can power TiO2-Pt motors at 35 µm s-1 without producing bubbles, a significant improvement over conventional fuels such as water, H2O2 or hydroquinone. The effectiveness of hole scavengers such as triethanolamine can be generalized to other photocatalytic micromotors containing a heterojunction with an n-type (but not a p-type) semiconductor.

7.
ACS Nano ; 14(7): 8658-8667, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32530617

RESUMEN

A hybrid micromotor is an active colloid powered by more than one power source, often exhibiting expanded functionality and controllability than those of a singular energy source. However, these power sources are often applied orthogonally, leading to stacked propulsion that is just a sum of two independent mechanisms. Here, we report that TiO2-Pt Janus micromotors, when subject to both UV light and AC electric fields, move up to 90% faster than simply adding up the speed powered by either source. This unexpected synergy between light and electric fields, we propose, arises from the fact that an electrokinetically powered TiO2-Pt micromotor moves near a substrate with a tilted Janus interface that, upon the application of an electric field, becomes rectified to be vertical to the substrate. Control experiments with magnetic fields and three types of micromotors unambiguously and quantitatively show that the tilting angle of a micromotor correlates positively with its instantaneous speed, reaching maximum at a vertical Janus interface. Such "tilting-induced retardation" could affect a wide variety of chemically powered micromotors, and our findings are therefore helpful in understanding the dynamics of micromachines in confinement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA