Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Apoptosis ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327353

RESUMEN

Hepatocellular carcinoma (HCC) is a complex disease with advanced presentation that significantly affects survival rates. Therefore, novel therapeutic strategies are needed. In this study, we investigate the tumor microenvironment (TME) in HCC by analyzing 13 HCC samples at single cell level. We identified key cell populations, including CD8 + T cells, Tregs, M1/M2 macrophages, and CD4 + memory T cells, and explored their roles and interactions. Our research revealed an early enrichment of CD8 + T cells, which could potentially lead to their exhaustion and facilitate tumor progression. We also investigated the impact of percutaneous radiofrequency ablation (RFA) on the immune microenvironment. Using a dual tumor mouse model, we demonstrated that RFA induces necrosis, enhancing antigen presentation and altering immune responses. Our results indicate that RFA increases PD-L1 expression in residual liver tissue, suggesting potential immune escape mechanisms. Furthermore, the combination of RFA and anti-PD-L1 therapy in the mouse model resulted in significant improvements in immune modulation. This included increased CD8 + T cell efficacy and decreased Treg infiltration. This combination shows promise as an approach to counteract HCC progression by altering the immune landscape. This study highlights the critical interaction within the TME of HCC and suggests the possibility of improving patient outcomes by targeting immune evasion mechanisms through combined therapeutic strategies.

2.
Mol Ther ; 31(2): 503-516, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36384875

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with poor prognosis. Gemcitabine-based chemotherapy has become one of the main modalities of its management. However, gemcitabine resistance frequently occurs, leading to failure of PDAC therapy. Platelet-derived growth factors (PDGFs) and their receptors play important roles in cancer progression and chemoresistance. We aimed to investigate the biological function and therapeutic significance of platelet-derived growth factor C (PDGFC) in drug-resistant PDAC. Our study showed that PDGFC was abnormally highly expressed in gemcitabine-resistant PDAC. Silencing PDGFC expression can enhance the therapeutic effect of gemcitabine on PDAC. Mechanistically, the transcription of PDGFC is mediated by H3K27 acetylation, and PDGFC promotes gemcitabine resistance by activating the PDGFR-PI3K-AKT signaling pathway. The PDGFR inhibitor imatinib inhibits the PDGFR pathway. Imatinib and gemcitabine have a synergistic effect on the treatment of PDAC, and imatinib can significantly enhance the anti-tumor effect of gemcitabine in a drug-resistant PDAC patient-derived xenograft model. In conclusion, PDGFC is a potential predictor of gemcitabine-resistant PDAC. Imatinib inhibits PDGFR activation to promote gemcitabine sensitivity in PDAC. Combined modality regimen of imatinib and gemcitabine is likely to translate into clinical trial for the treatment of PDGFC-associated gemcitabine-resistant patients.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gemcitabina , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Desoxicitidina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transducción de Señal , Resistencia a Antineoplásicos/genética
3.
Cancer Sci ; 110(10): 3110-3121, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31385398

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common malignancies and the fourth leading cause of cancer-related death worldwide. Our previous study showed that EYA4 functioned by suppressing growth of HCC tumor cells, but its molecular mechanism is still not elucidated. Based on the results of gene microassay, EYA4 was inversely correlated with MYCBP and was verified in human HCC tissues by immunohistochemistry and western blot. Overexpressed and KO EYA4 in human HCC cell lines confirmed the negative correlation between EYA4 and MYCBP by qRT-PCR and western blot. Transfected siRNA of MYCBP in EYA4 overexpressed cells and overexpressed MYCBP in EYA4 KO cells could efficiently rescue the proliferation and G2/M arrest effects of EYA4 on HCC cells. Mechanistically, armed with serine/threonine-specific protein phosphatase activity, EYA4 reduced nuclear translocation of ß-catenin by dephosphorylating ß-catenin at Ser552, thereby suppressing the transcription of MYCBP which was induced by ß-catenin/LEF1 binding to the promoter of MYCBP. Clinically, HCC patients with highly expressed EYA4 and poorly expressed MYCBP had significantly longer disease-free survival and overall survival than HCC patients with poorly expressed EYA4 and highly expressed MYCBP. In conclusion, EYA4 suppressed HCC tumor cell growth by repressing MYCBP by dephosphorylating ß-catenin S552. EYA4 combined with MYCBP could be potential prognostic biomarkers in HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteínas de Unión al ADN/genética , Neoplasias Hepáticas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , beta Catenina/metabolismo , Adulto , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Masculino , Persona de Mediana Edad , Fosforilación , Pronóstico , Serina/metabolismo , Análisis de Supervivencia , Factores de Transcripción/metabolismo , Transcripción Genética , beta Catenina/química
4.
J Cell Biochem ; 119(7): 6045-6056, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29574975

RESUMEN

In the present study, we aimed to search for dysregulated lnRNAs in Hepatocellular carcinoma (HCC) tissues, and analyze the relationship of its expression level with the clinicopathological feature and patient prognosis. The biological function of FLVCR1-AS1, the identified lncRNA, in the process of HCC development, and progression was investigated in vitro and in vivo. The underlying molecular mechanism was further explored. We determined FLVCR1-AS1 expression in HCC tissues and peri-tumor tissues by bioinformatic analysis, qRT-PCR, Northern blot and in situ hybridization. The relationship between FLVCR1-AS1 expression level and prognosis was determined by analyzing clinical samples. The effects of FLVCR1-AS1 knockdown on HCC cell proliferation, apoptosis, migration, and invasion were investigated by CCK8, FACS, and tanswell assay, respectively. Tumor xenograft model was used to determine the influence of down-regulated FLVCR1-AS1 on tumor growth and metastasis. lncRNA FLVCR1-AS1 was extremely up-regulated in HCC tissues and cell lines. FLVCR1-AS1 expression level was positively correlated with tumor severity. FLVCR1-AS1 knockdown remarkably inhibited HCC cell proliferation, migration, and invasion in vitro and in vivo while induced cell apoptosis. In mechanism, FLVCR1-AS1 acted as a competitive endogenous RNAs to sponge miR-513c which targeted the mRNA of MET for degradation. By directly sponging miR-513c, FLVCR1-AS1 increased MET expression in HCC, and then promoted HCC progression. It was demonstrated that FLVCR1-AS1 played a positive role in HCC development and progression according to the study in its mechanism, function and clinical manifestation, so that it could be expected to become a new target in HCC prevention and treatment.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/patología , Movimiento Celular , Proliferación Celular , Neoplasias Hepáticas/patología , MicroARNs/genética , ARN Largo no Codificante/genética , Animales , Apoptosis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/cirugía , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/cirugía , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Int Immunopharmacol ; 141: 112917, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137630

RESUMEN

PURPOSE: This study aimed to explore novel targets for hepatocellular carcinoma (HCC) treatment by investigating the role of fatty acid metabolism. METHODS: RNA-seq and clinical data of HCC were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatic analyses were employed to identify differentially expressed genes (DEGs) related to prognosis. A signature was then constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression to classify HCC patients from the TCGA database into low-risk and high-risk groups. The predictive performance of the signature was evaluated through principal components analysis (PCA), Kaplan Meier (KM) survival analysis, receiver operating characteristics (ROC) curves, nomogram, genetic mutations, drug sensitivity analysis, immunological correlation analysis, and enrichment analysis. Single-cell maps were constructed to illustrate the distribution of core genes. Immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR), and western blot were employed to verify the expression of core genes. The function of one core gene was validated through a series of in vitro assays, including cell viability, colony formation, wound healing, trans-well migration, and invasion assays. The results were analyzed in the context of relevant signaling pathways. RESULTS: Bioinformatic analyses identified 15 FAMGs that were related to prognosis. A 4-gene signature was constructed, and patients were divided into high- and low-risk groups according to the signature. The high-risk group exhibited a poorer prognosis compared to the low-risk group in both the training (P < 0.001) and validation (P = 0.020) sets. Furthermore, the risk score was identified as an independent predictor of OS (P < 0.001, HR = 8.005). The incorporation of the risk score and clinicopathologic features into a nomogram enabled the effective prediction of patient prognosis. The model was able to effectively predict the immune microenvironment, drug sensitivity to chemotherapy, and gene mutation for each group. Single-cell maps demonstrated that FAMGs in the model were distributed in tumor cells. Enrichment analyses revealed that the cell cycle, fatty acid ß oxidation and PPAR signaling pathways were the most significant pathways. Among the four key prognostically related FAMGs, Spermine Synthase (SMS) was selected and validated as a potential oncogene affecting cell cycle, PPAR-γ signaling pathway and fatty acid ß oxidation in HCC. CONCLUSIONS: The risk characteristics based on FAMGs could serve as independent prognostic indicators for predicting HCC prognosis and could also serve as evaluation criteria for gene mutations, immunity, and chemotherapy drug therapy in HCC patients. Meanwhile, targeted fatty acid metabolism could be used to treat HCC through related signaling pathways.


Asunto(s)
Carcinoma Hepatocelular , Ácidos Grasos , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , PPAR gamma , Transducción de Señal , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Ácidos Grasos/metabolismo , PPAR gamma/metabolismo , PPAR gamma/genética , Oxidación-Reducción , Línea Celular Tumoral , Progresión de la Enfermedad , Pronóstico , Masculino , Femenino , Persona de Mediana Edad
6.
J Gastrointest Cancer ; 55(2): 800-808, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38280173

RESUMEN

INTRODUCTION: Previously we demonstrated that elevated serum CYFRA 21 - 1 is a reliable diagnostic and prognostic biomarker for biliary tract cancers. This study aims to explore the diagnostic performance of bile CYFRA 21 - 1 (bCYFRA 21 - 1) in discriminating malignant biliary obstruction (MBO) caused by cholangiocarcinoma (CCA). METHODS: 77 CCA patients ((17 intrahepatic CCA (iCCA), 49 perihilar CCA (pCCA) and 11 distal CCA (dCCA)) and 43 benign patients with biliary obstruction were enrolled. Serum and bile levels of CYFRA 21 - 1, carcinoembryonic antigen (CEA) and carbohydrate antigen 19 - 9 (CA19-9) were quantified. Diagnostic performances of these biomarkers were estimated by receiver operator characteristic curves. Subgroups analysis of these tumor markers among CCA subtypes was performed. RESULTS: High bCYFRA 21 - 1 (cut-off value of 59.25 ng/mL with sensitivity of 0.889 and specificity of 0.750) and high bile to serum ratio of CYFRA 21 - 1 (b/sCYFRA 21 - 1, cut-off value of 31.55 with sensitivity of 0.741 and specificity of 0.778) achieved better diagnostic performance than any other biomarker in discriminating MBO. Subgroup analysis revealed that bCYFRA 21 - 1 was significantly elevated in all CCA subtypes; moreover b/sCYFRA 21 - 1 was upregulated in pCCA and dCCA (the mean b/sCYFRA 21 - 1 of pCCA was highest among CCA subtypes: 57.90, IQR 29.82-112.27). CONCLUSIONS: Both high biliary CYFRA 21 - 1 and high bile to serum ratio of CYFRA 21 - 1 were reliable diagnostic biomarkers for MBO caused by CCA.


Asunto(s)
Antígenos de Neoplasias , Neoplasias de los Conductos Biliares , Bilis , Biomarcadores de Tumor , Colangiocarcinoma , Colestasis , Queratina-19 , Humanos , Queratina-19/sangre , Queratina-19/análisis , Antígenos de Neoplasias/sangre , Antígenos de Neoplasias/análisis , Masculino , Colangiocarcinoma/complicaciones , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/sangre , Femenino , Persona de Mediana Edad , Neoplasias de los Conductos Biliares/diagnóstico , Neoplasias de los Conductos Biliares/sangre , Neoplasias de los Conductos Biliares/complicaciones , Bilis/metabolismo , Biomarcadores de Tumor/sangre , Anciano , Colestasis/diagnóstico , Colestasis/sangre , Colestasis/etiología , Colestasis/complicaciones , Antígeno CA-19-9/sangre , Pronóstico , Antígeno Carcinoembrionario/sangre , Adulto , Diagnóstico Diferencial
7.
Cell Prolif ; 57(10): e13659, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38773866

RESUMEN

Aberrant A-to-I RNA editing, mediated by ADAR1 has been found to be associated with increased tumourigenesis and the development of chemotherapy resistance in various types of cancer. Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive malignancy with a poor prognosis, and overcoming chemotherapy resistance poses a significant clinical challenge. This study aimed to clarify the roles of ADAR1 in tumour resistance to cisplatin in iCCA. We discovered that ADAR1 expression is elevated in iCCA patients, particularly in those resistant to cisplatin, and associated with poor clinical outcomes. Downregulation of ADAR1 can increase the sensitivity of iCCA cells to cisplatin treatment, whereas its overexpression has the inverse effect. By integrating RNA sequencing and Sanger sequencing, we identified BRCA2, a critical DNA damage repair gene, as a downstream target of ADAR1 in iCCA. ADAR1 mediates the A-to-I editing in BRCA2 3'UTR, inhibiting miR-3157-5p binding, consequently increasing BRCA2 mRNA and protein levels. Furthermore, ADAR1 enhances cellular DNA damage repair ability and facilitates cisplatin resistance in iCCA cells. Combining ADAR1 targeting with cisplatin treatment markedly enhances the anticancer efficacy of cisplatin. In conclusion, ADAR1 promotes tumour progression and cisplatin resistance of iCCA. ADAR1 targeting could inform the development of innovative combination therapies for iCCA.


Asunto(s)
Adenosina Desaminasa , Proteína BRCA2 , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Cisplatino , Resistencia a Antineoplásicos , Edición de ARN , Proteínas de Unión al ARN , Cisplatino/farmacología , Cisplatino/uso terapéutico , Humanos , Colangiocarcinoma/genética , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Resistencia a Antineoplásicos/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Femenino , Animales , MicroARNs/genética , MicroARNs/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Masculino
8.
Oncogene ; 43(31): 2405-2420, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38914663

RESUMEN

Gemcitabine resistance is a major obstacle to the effectiveness of chemotherapy in pancreatic ductal adenocarcinoma (PDAC). Therefore, new strategies are needed to sensitize cancer cells to gemcitabine. Here, we constructed gemcitabine-resistant PDAC cells and analyzed them with RNA-sequence. Employing an integrated approach involving bioinformatic analyses from multiple databases, TGFB2 is identified as a crucial gene in gemcitabine-resistant PDAC and is significantly associated with poor gemcitabine therapeutic response. The patient-derived xenograft (PDX) model further substantiates the gradual upregulation of TGFB2 expression during gemcitabine-induced resistance. Silencing TGFB2 expression can enhance the chemosensitivity of gemcitabine against PDAC. Mechanistically, TGFB2, post-transcriptionally stabilized by METTL14-mediated m6A modification, can promote lipid accumulation and the enhanced triglyceride accumulation drives gemcitabine resistance by lipidomic profiling. TGFB2 upregulates the lipogenesis regulator sterol regulatory element binding factor 1 (SREBF1) and its downstream lipogenic enzymes via PI3K-AKT signaling. Moreover, SREBF1 is responsible for TGFB2-mediated lipogenesis to promote gemcitabine resistance in PDAC. Importantly, TGFB2 inhibitor imperatorin combined with gemcitabine shows synergistic effects in gemcitabine-resistant PDAC PDX model. This study sheds new light on an avenue to mitigate PDAC gemcitabine resistance by targeting TGFB2 and lipid metabolism and develops the potential of imperatorin as a promising chemosensitizer in clinical translation.


Asunto(s)
Adenosina , Carcinoma Ductal Pancreático , Desoxicitidina , Resistencia a Antineoplásicos , Gemcitabina , Metabolismo de los Lípidos , Neoplasias Pancreáticas , Factor de Crecimiento Transformador beta2 , Humanos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/genética , Resistencia a Antineoplásicos/genética , Animales , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Ratones , Adenosina/análogos & derivados , Adenosina/farmacología , Adenosina/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Transducción de Señal/efectos de los fármacos , Reprogramación Metabólica , Proteína 1 de Unión a los Elementos Reguladores de Esteroles
9.
Heliyon ; 10(17): e36684, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263146

RESUMEN

Increasing evidence indicates that the remodeling of immune microenvironment heterogeneity influences pancreatic cancer development, as well as sensitivity to chemotherapy and immunotherapy. However, a gap remains in the exploration of the immunosenescence microenvironment in pancreatic cancer. In this study, we identified two immunosenescence-associated isoforms (IMSP1 and IMSP2), with consequential differences in prognosis and immune cell infiltration. We constructed the MLIRS score, a hazard score system with robust prognostic performance (area under the curve, AUC = 0.91), based on multiple machine learning algorithms (101 cross-validation methods). Patients in the high MLIRS score group had worse prognosis (P < 0.0001) and lower abundance of immune cell infiltration. Conversely, the low MLIRS score group showed better sensitivity to chemotherapy and immunotherapy. Additionally, our MLIRS system outperformed 68 other published signatures. We identified the immunosenescence microenvironmental windsock GLUT1 with certain co-expression properties with immunosenescence markers. We further demonstrated its positive modulation ability of proliferation, migration, and gemcitabine resistance in pancreatic cancer cells. To conclude, our study focused on training of composite machine learning algorithms in multiple datasets to develop a robust machine learning modeling system based on immunosenescence and to identify an immunosenescence-related microenvironment windsock, providing direction and guidance for clinical prediction and application.

10.
Adv Sci (Weinh) ; : e2406714, 2024 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-39488785

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a dismal prognosis. Gemcitabine-based chemotherapy has emerged as a first-line treatment for PDAC. However, the development of gemcitabine resistance often results in therapeutic failure. In order to uncover the underlying mechanisms of gemcitabine resistance, gemcitabine-resistant PDAC cell lines and patient-derived xenograft (PDX) models are established and subjected to RNA sequencing. It is found that CMTM6 is closely related to gemcitabine resistance in PDAC. Multi-omics analysis revealed that EP300-mediated H3K27ac modification is involved in the transcriptional activation of CMTM6, which maintains IGF2BP1 expression by preventing its ubiquitination. The m6A reader IGF2BP1 stabilizes the EP300 and MYC mRNAs by recognizing m6A modifications, forming a positive feedback loop that enhances tumor stemness and ultimately contributes to PDAC resistance. The combined application of the EP300 inhibitor inobrodib and gemcitabine exerts a synergistic effect on PDAC. Overall, these findings reveal that the EP300-CMTM6-IGF2BP1 positive feedback loop facilitates gemcitabine resistance via epigenetic reprogramming and the combined use of inobrodib and gemcitabine represents a promising strategy for overcoming chemoresistance in PDAC, warranting further investigation in clinical trials.

11.
Adv Sci (Weinh) ; 11(40): e2407069, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39225567

RESUMEN

Lipid metabolism reprogramming stands as a fundamental hallmark of cancer cells. Unraveling the core regulators of lipid biosynthesis holds the potential to find promising therapeutic targets in pancreatic ductal adenocarcinoma (PDAC). Here, it is demonstrated that platelet-derived growth factor C (PDGFC) orchestrated lipid metabolism, thereby facilitated the malignant progression of PDAC. Expression of PDGFC is upregulated in PDAC cohorts and is corelated with a poor prognosis. Aberrantly high expression of PDGFC promoted proliferation and metastasis of PDAC both in vitro and in vivo. Mechanistically, PDGFC accelerated the malignant progression of PDAC by upregulating fatty acid accumulation through sterol regulatory element-binding protein 1 (SREBP1), a key transcription factor in lipid metabolism. Remarkably, Betulin, an inhibitor of SREBP1, demonstrated the capability to inhibit proliferation and metastasis of PDAC cell lines, along with attenuating the process of liver metastasis in vivo. Overall, the study underscores the pivotal role of PDGFC-mediated lipid metabolism in PDAC progression, suggesting PDGFC as a potential biomarker for PDAC metastasis. Targeting PDGFC-induced lipid metabolism emerges as a promising therapeutic strategy for metastatic PDAC, with the potential to improve clinical outcomes.


Asunto(s)
Carcinoma Ductal Pancreático , Metabolismo de los Lípidos , Neoplasias Pancreáticas , Factor de Crecimiento Derivado de Plaquetas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Humanos , Animales , Ratones , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/genética , Línea Celular Tumoral , Linfocinas/metabolismo , Linfocinas/genética , Modelos Animales de Enfermedad , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Masculino
12.
Cancer Lett ; 585: 216640, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38290659

RESUMEN

Gemcitabine, a pivotal chemotherapeutic agent for pancreatic ductal adenocarcinoma (PDAC), frequently encounters drug resistance, posing a significant clinical challenge with implications for PDAC patient prognosis. In this study, employing an integrated approach involving bioinformatic analyses from multiple databases, we unveil CSNK2A1 as a key regulatory factor. The patient-derived xenograft (PDX) model further substantiates the critical role of CSNK2A1 in gemcitabine resistance within the context of PDAC. Additionally, targeted silencing of CSNK2A1 expression significantly enhances sensitivity of PDAC cells to gemcitabine treatment. Mechanistically, CSNK2A1's transcriptional regulation is mediated by H3K27 acetylation in PDAC. Moreover, we identify CSNK2A1 as a pivotal activator of autophagy, and enhanced autophagy drives gemcitabine resistance. Silmitasertib, an established CSNK2A1 inhibitor, can effectively inhibit autophagy. Notably, the combinatorial treatment of Silmitasertib with gemcitabine demonstrates remarkable efficacy in treating PDAC. In summary, our study reveals CSNK2A1 as a potent predictive factor for gemcitabine resistance in PDAC. Moreover, targeted CSNK2A1 inhibition by Silmitasertib represents a promising therapeutic strategy to restore gemcitabine sensitivity in PDAC, offering hope for improved clinical outcomes.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gemcitabina , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Autofagia , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética
13.
Clin Res Hepatol Gastroenterol ; 47(3): 102089, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36707046

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with a dismal prognosis. Cuproptosis, a novel mechanism mediated by protein lipoylation, results in acute proteotoxic stress and ultimately cell death. However, the clinical impacts of cuproptosis-associated genes and their relationship with immune status in PDAC have not been documented. In this study, we aimed at constructing a cuproptosis- and immune-associated prognostic signature to stratify and predict the prognosis for PDAC patients. METHODS: The gene expression profiles of 176 PDAC patients from The Cancer Genome Atlas and 167 normal pancreas tissues from the Genotype-Tissue Expression Project were analyzed for differentially expressed genes (DEGs) between PDAC and normal tissues. Pearson correlation analyses were performed to screen out cuproptosis- and immune-associated DEGs. The risk signature of DEGs was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, which was validated in the Gene Expression Omnibus (GEO) cohort (n = 114). The immune characteristics in the two risk groups were evaluated using single-sample gene set enrichment analysis and ESTIMATE algorithms. RESULTS: A total of 91 cuproptosis- and immune-associated DEGs were screened out, and eight prognostic-related genes were identified using LASSO Cox regression. The prognostic-related genes were then used to construct a risk scoring model, which stratified patients into low- and high-risk groups and were further verified in the external GEO database. The patients in the high-risk group had significantly shorter overall survival than those in the low-risk group. A nomogram based on the risk signature was then constructed. Immune infiltration evaluation suggested that immune status was more activated in the low-risk group. The mutation spectrum also differed between high- and low-risk groups. CONCLUSIONS: Our cuproptosis- and immune-associated genetic risk signature could be a prognostic biomarker for PDAC. Cuproptosis might be a promising therapeutic target for PDAC.


Asunto(s)
Apoptosis , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Pronóstico , Factores de Riesgo , Cobre , Neoplasias Pancreáticas
14.
Gastroenterol Rep (Oxf) ; 10: goac051, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36196256

RESUMEN

Background: Pyroptosis is an emerging form of programmed cell death associated with progression in malignancies. Yet, there are few studies reporting on the association between pancreatic ductal adenocarcinoma (PDAC) and pyroptosis. Therefore, we aimed to construct a pyroptosis-related genetic signature to predict the clinical outcome and immune status in PDAC patients. Methods: RNA-seq data of 176 PDAC patients from The Cancer Genome Atlas (TCGA) and 167 PDAC patients from the Genotype-Tissue Expression Project were analysed for pyroptosis-related differentially expressed genes (DEGs) between PDAC and normal pancreas. The risk signature of DEGs was analysed using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis and its accuracy was validated in the Gene Expression Omnibus (GEO) cohort (n = 190). Functional enrichment analyses were performed to explore the mechanisms of the DEGs. The immune characteristics were evaluated using single-sample gene set enrichment analysis and ESTIMATE algorithms for each group. Results: A nine-gene risk signature was generated from LASSO Cox regression analysis and classified PDAC patients into either a high- or low-risk group according to the median risk score. The high-risk group had significantly shorter overall survival than the low-risk group and it was verified in the external GEO database. A nomogram based on the risk signature was constructed and showed an ideal prediction performance. Functional enrichment analyses revealed that pyroptosis might regulate the tumor immune microenvironment in PDAC. Immune infiltration evaluation suggested that immune status was more activated in the low-risk group than in the high-risk group. Conclusion: The risk signature encompassing nine pyroptosis-related genes may be a prognostic marker for PDAC. Pyroptosis might affect the prognosis of PDAC patients via regulating the tumor immune microenvironment.

15.
Oncogene ; 41(11): 1622-1633, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35094011

RESUMEN

N6-methyladenosine (m6A) RNA methylation has recently been found involving in regulatory mechanism of the tumor progression. Our aim was to explore the biological function and clinical significance of the m6A methyltransferase METTL3 in intrahepatic cholangiocarcinoma (ICC). In this study, we revealed that METTL3 was upregulated and predicted poor prognosis of patients with ICC. Multivariate regression analysis demonstrated that METTL3 expression was an independent predictor for overall survival in patients with ICC. Moreover, METTL3 knockdown inhibited ICC progression, while METTL3 overexpression showed the opposite effect. METTL3 inhibitor STM2457 also showed anti-tumor effect in ICC. Mechanistically, METTL3 transcription was driven by H3K4me3 activation. Upregulation of METTL3 mediated m6A modification of IFIT2 mRNA and accelerated IFIT2 mRNA decay in a YTHDF2-dependent manner, which promoted the development of ICC and lead to poorer prognosis. In summary, our findings revealed that H3K4me3 activation-driven METTL3 transcription promotes ICC progression by YTHDF2-mediated IFIT2 mRNA degradation, suggesting that METTL3 may serve as a potential target for human ICC therapy.


Asunto(s)
Colangiocarcinoma , Proteínas de Unión al ARN , Adenosina/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Colangiocarcinoma/genética , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Estabilidad del ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
16.
Clin Transl Med ; 12(6): e848, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35696608

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is an aggressive cancer with exceedingly poor prognosis, and chemoresistance is a huge challenge for treatment. N6-methyladenosine (m6 A) modification plays an important role in the progression and chemoresistance of cancers. We aimed to investigate the oncogenic function and therapeutic significance of the m6 A binding protein, YTH domain family 2 (YTHDF2), in ICC progression and cisplatin-based chemotherapy. METHODS: Several independent data sets were used to assess the expression of YTHDF2 in ICC, particularly in chemoresistant ICC. Knockdown and overexpression were used to evaluate the effects of YTHDF2 on tumourigenesis and cisplatin response in ICC. Multi-omics sequencing was performed to identify target genes. RIP, dual luciferase reporter, RNA stability experiment and loss-of-function assays were conducted to study the mechanisms underlying the oncogenic function of YTHDF2. Furthermore, patient-derived xenograft (PDX) model was established to determine the effect of combination treatment of YTHDF2 siRNA and cisplatin in ICC. RESULTS: Our study showed that YTHDF2 was upregulated in ICC tissues, particularly in chemoresistant ICC tissues, and correlated with poor prognosis. Furthermore, silencing YTHDF2 led to inhibited proliferation, promoted apoptosis and G0/G1 cell cycle arrest. Its downregulation also enhanced DNA damage and sensitised ICC cells to cisplatin. YTHDF2 overexpression exerted the opposite results. Integration analysis using RNA-seq, MeRIP-seq and anti-YTHDF2 RIP-seq elucidated the role of YTHDF2 in tumourigenesis and cisplatin-desensitising function by promoting the degradation of cyclin-dependent kinase inhibitor 1B (CDKN1B) mRNA in an m6 A-dependent manner. Downregulation of CDKN1B increased the YTHDF2 silencing-induced influence on tumourigenesis and cisplatin response to ICC. In addition, the combination treatment of YTHDF2 siRNA and cisplatin significantly enhanced the anti-tumour effect of cisplatin in a chemoresistant ICC PDX model. CONCLUSIONS: YTHDF2 exhibits tumour oncogenic and cisplatin-desensitising properties, which may offer insight into the development of novel combination therapeutic strategies for ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular/genética , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Cisplatino/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/uso terapéutico , Humanos , Estabilidad del ARN/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/uso terapéutico , Proteínas de Unión al ARN/genética
17.
J Gastrointest Surg ; 25(4): 1001-1009, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32253644

RESUMEN

BACKGROUND: The minimum number of lymph nodes (LNs) that should be resected for accurate nodal staging in patients with ampullary carcinoma (AC) remains controversial. This study aimed to establish a nodal staging score (NSS) to evaluate whether a pathological node-negative AC patient is indeed free of a nodal disease. METHODS: A total of 2539 AC patients with stages I-III were retrieved from the Surveillance, Epidemiology and End Result database (design cohort [DC], n = 2382) and First Affiliated Hospital of Sun Yat-sen University (validation cohort [VC], n = 157). NSS was developed to represent the probability that a node-negative patient was correctly staged as a function of the number of examined LNs (ELNs) and pathologic T stage with a beta-binomial model. Its prognostic value in node-negative patients was assessed by survival analysis. RESULTS: The probability of missing a metastatic LN decreased as the number of the ELNs increased. NSS was escalated as the number of ELNs increased. For patients with early-stage (T1-T2) and late-stage (T3-T4) tumors, examining 7 and 33 lymph nodes could ensure an NSS of 80.0%, respectively. Multivariate analysis showed that higher NSS was an independent favorable prognostic factor for overall survival in node-negative patients with AC (DC, p < 0.001; VC, p = 0.001). CONCLUSIONS: NSS model could be used to evaluate the accuracy of nodal staging and predict the prognosis of node-negative AC patients. It could assist in making clinical strategies in node-negative AC patients.


Asunto(s)
Ampolla Hepatopancreática , Humanos , Escisión del Ganglio Linfático , Ganglios Linfáticos/cirugía , Metástasis Linfática , Estadificación de Neoplasias , Pronóstico , Estudios Retrospectivos
18.
Cancer Lett ; 518: 196-206, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34271104

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with poor prognosis due to early metastasis. The aberrant N6-methyladenosine (m6A) RNA modification has emerged as an important mechanism in cancer progression and metastasis, but its role in PDAC remained largely unknown. Here, we demonstrated that an m6A regulator, heterogeneous nuclear ribonucleoprotein C (HNRNPC), modulated alternative splicing events to promote PDAC metastasis. In clinical PDAC tissues, high expression of HNRNPC was correlated with metastasis, resulting in poor prognosis in PDAC patients. Knockdown of HNRNPC significantly reduced PDAC cell invasion in vitro and metastasis in vivo. In contrast, overexpression of HNRNPC provoked malignant phenotypes of PDAC cells. Mechanistically, HNRNPC antagonized the anti-metastatic isoform of TAF8 (TAF8L) but increased the pro-metastatic alternative splicing isoform of TAF8 (TAF8S). Mutation of the m6A-site of TAF8 attenuated the interaction between HNRNPC and TAF8 transcript, leading to the decrease of TAF8S. Furthermore, experimental manipulation of the anti-metastasis splicing isoform TAF8L revealed that splice isoform switching of TAF8 is crucial for PDAC metastasis. In conclusion, our findings demonstrate the essentiality of HNRNPC-mediated alternative splicing events that impinges on metastatic PDAC.


Asunto(s)
Adenosina/análogos & derivados , Empalme Alternativo/genética , Carcinoma Ductal Pancreático/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Neoplasias Pancreáticas/genética , Adenosina/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Factor de Transcripción TFIID/genética , Neoplasias Pancreáticas
19.
ACS Nano ; 15(9): 14744-14755, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34405985

RESUMEN

Gallbladder cancer (GBC) is the most aggressive malignancy of the biliary tract cancer, and there is a lack of effective treatment. Here, we developed a nanoparticle platform (8P4 NP) that can deliver THZ1, a cyclin-dependent kinase 7 (CDK7) inhibitor, to treat GBC. Analysis of datasets demonstrated that CDK7 was positively correlated with poor prognosis. CDK7 inhibition suppressed cell proliferation, induced apoptosis, and caused cell cycle block in GBC cells. THZ1 downregulated CDK7-mediated phosphorylation of RNA polymerase II (RNAPII), resulting in a significant downregulation of transcriptional programs, with a preferential repression of oncogenic transcription factors. To improve the tumor targeting efficiency of THZ1, 8P4 NPs were prepared and assembled with THZ1 to form THZ1@8P4 NPs. Compared with free THZ1, THZ1@8P4 NPs showed more advantages in prolonging blood circulation, escaping from lysosomes and increasing cellular uptake. Importantly, THZ1@8P4 NPs demonstrated a more significant inhibition effect on GBC cells than free THZ1 in vitro. In addition, THZ1@8P4 NPs could efficiently deliver THZ1 to tumor sites in a patient-derived xenograft model of early recurrence, leading to tumor regression and transcriptional inhibition with minimal toxicity. In summary, we conclude that THZ1@8P4 NPs provide a potent therapeutic strategy that targets CDK7-mediated transcriptional addiction in GBC.


Asunto(s)
Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Neoplasias de la Vesícula Biliar , Nanopartículas , Fenilendiaminas/farmacología , Pirimidinas/farmacología , Animales , Apoptosis , Puntos de Control del Ciclo Celular , Proliferación Celular , Sistemas de Liberación de Medicamentos , Neoplasias de la Vesícula Biliar/terapia , Humanos , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Activadora de Quinasas Ciclina-Dependientes
20.
Nanoscale ; 12(29): 15767-15774, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32729861

RESUMEN

Survival data have shown little therapeutic improvement in pancreatic ductal adenocarcinoma (PDAC) over the past several decades, mostly due to aggressive growth and resistance to therapy. Glutathione (GSH) depletion in PDAC may serve as a strategy to suppress tumour malignancy and sensitize tumour cells to therapy. Herein, novel l-cysteine-based poly(disulfide amide) polymers were fabricated to deliver a histone methyltransferase G9a inhibitor (UNC0638) that can simultaneously block GSH biosynthesis and clear cellular GSH levels in PDAC. The optimal UNC0638 nanodrug (NPUNC0638) had the desired particle size, reasonable drug loading capacity, and GSH-controlled drug release. Moreover, compared to UNC0638 alone, NPUNC0638 showed better efficacy in inhibiting cell viability, arresting the cell cycle, inducing apoptosis, and suppressing the invasion and self-renewal capacity of PDAC cells. Furthermore, NPUNC0638 was found to be tumour-specific and well tolerated with no apparent toxicity to vital organs and haematopoietic stem and progenitor cells. Additionally, treatment with NPUNC0638 provided favourable outcomes in the PDAC xenograft model. Therefore, this work presents a potent drug delivery platform to overcome the GSH-induced malignant potential of PDAC.


Asunto(s)
Nanopartículas , Neoplasias Pancreáticas , Preparaciones Farmacéuticas , Línea Celular Tumoral , Histona Metiltransferasas , Histonas , Humanos , Oxidación-Reducción , Neoplasias Pancreáticas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA