Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39056951

RESUMEN

With the rapid development of artificial intelligence and Internet of Things (IoT) technologies, automotive companies are integrating federated learning into connected vehicles to provide users with smarter services. Federated learning enables vehicles to collaboratively train a global model without sharing sensitive local data, thereby mitigating privacy risks. However, the dynamic and open nature of the Internet of Vehicles (IoV) makes it vulnerable to potential attacks, where attackers may intercept or tamper with transmitted local model parameters, compromising their integrity and exposing user privacy. Although existing solutions like differential privacy and encryption can address these issues, they may reduce data usability or increase computational complexity. To tackle these challenges, we propose a conditional privacy-preserving identity-authentication scheme, CPPA-SM2, to provide privacy protection for federated learning. Unlike existing methods, CPPA-SM2 allows vehicles to participate in training anonymously, thereby achieving efficient privacy protection. Performance evaluations and experimental results demonstrate that, compared to state-of-the-art schemes, CPPA-SM2 significantly reduces the overhead of signing, verification and communication while achieving more security features.

2.
Entropy (Basel) ; 25(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37509926

RESUMEN

Ciphertext-Policy Attribute-Based Encryption (CP-ABE) technology provides a new solution to address the security and fine-grained access control of traffic information in vehicular ad hoc networks (VANETs). However, in most CP-ABE schemes for VANETs, attribute revocation suffers from high system consumption and complex revocation operations, as well as from high computational overhead and low efficiency due to the use of bilinear pairwise operations. Based on this, this paper proposes a lightweight CP-ABE scheme that supports direct attribute revocation in VANETs. The scheme implements an agent-based direct attribute revocation mechanism by separating dynamic and static attributes of vehicle terminals, which reduces system consumption and simplifies the revocation operation process. The scheme uses scalar multiplication on elliptic curves instead of bilinear pairing operations and uses computational outsourcing techniques to reduce the terminal decryption cost and improve the efficiency of the scheme. The security and performance analysis shows that the overall efficiency of our scheme is better than the existing schemes under the premise of ensuring data confidentiality and integrity.

3.
Entropy (Basel) ; 25(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37238566

RESUMEN

Blockchain technology affords data integrity protection and building trust mechanisms in transactions for distributed networks, and, therefore, is seen as a promising revolutionary information technology. At the same time, the ongoing breakthrough in quantum computation technology contributes toward large-scale quantum computers, which might attack classic cryptography, seriously threatening the classic cryptography security currently employed in the blockchain. As a better alternative, a quantum blockchain has high expectations of being immune to quantum computing attacks perpetrated by quantum adversaries. Although several works have been presented, the problems of impracticality and inefficiency in quantum blockchain systems remain prominent and need to be addressed. First, this paper develops a quantum-secure blockchain (QSB) scheme by introducing a consensus mechanism-quantum proof of authority (QPoA) and an identity-based quantum signature (IQS)-wherein QPoA is used for new block generation and IQS is used for transaction signing and verification. Second, QPoA is developed by adopting a quantum voting protocol to achieve secure and efficient decentralization for the blockchain system, and a quantum random number generator (QRNG) is deployed for randomized leader node election to protect the blockchain system from centralized attacks like distributed denial of service (DDoS). Compared to previous work, our scheme is more practical and efficient without sacrificing security, greatly contributing to better addressing the challenges in the quantum era. Extensive security analysis demonstrates that our scheme provides better protection against quantum computing attacks than classic blockchains. Overall, our scheme presents a feasible solution for blockchain systems against quantum computing attacks through a quantum strategy, contributing toward quantum-secured blockchain in the quantum era.

4.
Biochem Biophys Res Commun ; 531(3): 357-363, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32800539

RESUMEN

Microgravity can cause body fluids to accumulate in the brain, resulting in brain damage. There are few studies that focus on the detection of electrophysiological signals in simulated microgravity rats, and the precise mechanisms are unknown. In this study, a new device was established to investigate the influence of microgravity on hippocampal neurons. A 16-channel microelectrode array was fabricated for in vivo multichannel electrophysiological recordings. In these experiments, microelectrode array was inserted into normal, 28-day tail suspension model, and 3-day recovered after modulation rats to record electrophysiological signals in the CA1 and DG regions of the hippocampus. Through analysis of electrophysiological signals, we obtained the following results: (1) spike signals of model rats sporadically showed brief periods of suspension involving most of the recorded neurons, which corresponded to slow and smooth peaks in local field potentials. For model rats, the firing rate was reduced, and the power in the frequency spectrum was concentrated in the slow frequency band (0-1 Hz); (2) after the detected hippocampal cells divided into pyramidal cells and interneurons, the spike duration of pyramidal cells showed remarkable latency, and their average firing rates showed a more significant decrease compared to interneurons. These results demonstrate that the hippocampal neurons were impaired after modulation in the cellular dimension, and pyramidal cells were more susceptible than interneurons.


Asunto(s)
Región CA1 Hipocampal/fisiopatología , Giro Dentado/fisiopatología , Electrodos Implantados , Fenómenos Electrofisiológicos , Neuronas/fisiología , Simulación de Ingravidez , Potenciales de Acción/fisiología , Animales , Masculino , Trastornos de la Memoria/fisiopatología , Microelectrodos , Prueba del Laberinto Acuático de Morris , Células Piramidales/fisiología , Ratas Sprague-Dawley , Procesamiento de Señales Asistido por Computador , Aprendizaje Espacial
5.
Sensors (Basel) ; 20(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823521

RESUMEN

The detection of neuroelectrophysiology while performing optogenetic modulation can provide more reliable and useful information for neural research. In this study, an optical fiber and a microelectrode array were integrated through hot-melt adhesive bonding, which combined optogenetics and electrophysiological detection technology to achieve neuromodulation and neuronal activity recording. We carried out the experiments on the activation and electrophysiological detection of infected neurons at the depth range of 900-1250 µm in the brain which covers hippocampal CA1 and a part of the upper cortical area, analyzed a possible local inhibition circuit by combining opotogenetic modulation and electrophysiological characteristics and explored the effects of different optical patterns and light powers on the neuromodulation. It was found that optogenetics, combined with neural recording technology, could provide more information and ideas for neural circuit recognition. In this study, the optical stimulation with low frequency and large duty cycle induces more intense neuronal activity and larger light power induced more action potentials of neurons within a certain power range (1.032 mW-1.584 mW). The present study provided an efficient method for the detection and modulation of neurons in vivo and an effective tool to study neural circuit in the brain.


Asunto(s)
Microelectrodos , Fibras Ópticas , Optogenética , Potenciales de Acción , Neuronas
6.
Anal Biochem ; 550: 123-131, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29723519

RESUMEN

Temporal Lobe Epilepsy (TLE) is a chronic neurological disorder, characterized by sudden, repeated and transient central nervous system dysfunction. For better understanding of TLE, bio-nanomodified microelectrode arrays (MEA) are designed, for the achievement of high-quality simultaneous detection of glutamate signals (Glu) and multi-channel electrophysiological signals including action potentials (spikes) and local field potentials (LFPs). The MEA was fabricated by Micro-Electro-Mechanical System fabrication technology and all recording sites were modified with platinum black nano-particles, the average impedance decreased by nearly 90 times. Additionally, glutamate oxidase was also modified for the detection of Glu. The average sensitivity of the electrode in Glu solution was 1.999 ±â€¯0.032 × 10-2pA/µM·µm2(n = 3) and linearity was R = 0.9986, with a good selectivity of 97.82% for glutamate and effective blocking of other interferents. In the in-vivo experiments, the MEA was subjected in hippocampus to electrophysiology and Glu concentration detection. During seizures, the fire rate of spikes increases, and the interspike interval is concentrated within 30 ms. The amplitude of LFPs increases by 3 times and the power increases. The Glu level (4.22 µM, n = 4) was obviously higher than normal rats (2.24 µM, n = 4). The MEA probe provides an advanced tool for the detection of dual-mode signals in the research of neurological diseases.


Asunto(s)
Potenciales de Acción , Epilepsia del Lóbulo Temporal , Ácido Glutámico/metabolismo , Hipocampo , Animales , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/fisiopatología , Oro/química , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Masculino , Nanopartículas del Metal/química , Microelectrodos , Platino (Metal)/química , Ratas , Ratas Sprague-Dawley
7.
Nanotechnology ; 27(11): 114001, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26871752

RESUMEN

Glucose is the main substrate for neurons in the central nervous system. In order to efficiently characterize the brain glucose mechanism, it is desirable to determine the extracellular glucose dynamics as well as the corresponding neuroelectrical activity in vivo. In the present study, we fabricated an implantable microelectrode array (MEA) probe composed of platinum electrochemical and electrophysiology microelectrodes by standard micro electromechanical system (MEMS) processes. The MEA probe was modified with nano-materials and implanted in a urethane-anesthetized rat for simultaneous recording of striatal extracellular glucose, local field potential (LFP) and spike on the same spatiotemporal scale when the rat was in normoglycemia, hypoglycemia and hyperglycemia. During these dual-mode recordings, we observed that increase of extracellular glucose enhanced the LFP power and spike firing rate, while decrease of glucose had an opposite effect. This dual mode MEA probe is capable of examining specific spatiotemporal relationships between electrical and chemical signaling in the brain, which will contribute significantly to improve our understanding of the neuron physiology.


Asunto(s)
Potenciales de Acción , Cuerpo Estriado/fisiología , Glucosa/análisis , Análisis de Flujos Metabólicos/instrumentación , Sistemas Microelectromecánicos/instrumentación , Animales , Técnicas Biosensibles/instrumentación , Cuerpo Estriado/metabolismo , Electroquímica , Electrodos Implantados , Glucosa/metabolismo , Masculino , Microelectrodos , Nanotecnología , Ratas , Ratas Sprague-Dawley
8.
Sensors (Basel) ; 15(1): 868-79, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25569759

RESUMEN

Vesicular exocytosis is ubiquitous, but it is difficult to detect within the cells' communication mechanism. For this purpose, a 2 µm ultramicrodic carbon fiber electrode was fabricated in this work based on electrodeposition with over-oxidized polypyrrole nanoparticle (PPyox-CFE), which was applied successfully for real-time monitoring of quantal exocytosis from individual pheochromocytoma (PC12) cells. PPyox-CFE was evaluated by dopamine (DA) solutions through cyclic voltammetry and amperometry electrochemical methods, and results revealed that PPyox-CFE improved the detection limit of DA. In particular, the sensitivity of DA was improved to 24.55 µA·µM(-1)·µm(-2) using the PPyox-CFE. The ultramicrodic electrode combined with the patch-clamp system was used to detect vesicular exocytosis of DA from individual PC12 cells with 60 mM K+ stimulation. A total of 287 spikes released from 7 PC12 cells were statistically analyzed. The current amplitude (Imax) and the released charge (Q) of the amperometric spikes from the DA release by a stimulated PC12 cell is 45.1 ± 12.5 pA and 0.18 ± 0.04 pC, respectively. Furthermore, on average ~562,000 molecules were released in each vesicular exocytosis. PPyox-CFE, with its capability of detecting vesicular exocytosis, has potential application in neuron communication research.


Asunto(s)
Carbono/química , Técnicas Electroquímicas/métodos , Galvanoplastia/métodos , Exocitosis , Feocromocitoma/patología , Polímeros/química , Pirroles/química , Vesículas Transportadoras/metabolismo , Neoplasias de las Glándulas Suprarrenales/patología , Animales , Fibra de Carbono , Dopamina/análisis , Electrodos , Oxidación-Reducción , Ratas , Relación Señal-Ruido , Factores de Tiempo
9.
Front Cell Infect Microbiol ; 14: 1420995, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962321

RESUMEN

Introduction: Due to the high-density farming of Larimichthys crocea over the years, diseases caused by pathogens such as bacteria, viruses, and parasites frequently occur in Ningbo, posing a huge threat and challenge to the sustainable and healthy development of the L. crocea's bay farming industry. In order to understand the diseases occurrence in L. crocea farming in Ningbo area, an epidemiological investigation of L. crocea diseases was carried out through regular sampling in 2023. Methods: From April to October 2023, routine sampling of L. crocea was conducted monthly in various farming areas in Ningbo. Each time, live or dying L. crocea with obvious clinical symptoms were sampled, with a total number of 55 L. crocea collected. The samples were preserved in ice bags and transported to the laboratory for pathogen detection(including bacterial isolation and identification,virus identification, and parasites detection). Results: A total of fifty-five fish dying L. crocea with obvious clinical symptoms were collected in this study, of which 78.18% (43/55) were detected with symptoms caused by pathogenic infection, while 21.82% (12/55) did not have identified pathogens, which were presumed to be breeding abrasions, nutritional metabolic disorders, unconventional pathogens infection or other reasons. A total of twenty-five pathogenic bacteria strains were isolated, which mainly were Pseudomonas plecoglossicida and Vibrio harveyi, accounting for 52% (13/25) and 32% (8/25) of the pathogenic bacteria strains, respectively. Among them, both V. harveyi and Streptococcus. iniae co-infected one fish. Additionally, three other bacterial strains including Nocardia seriolae, Staphylococcus Saprophyticus, and Photobacterium damselae subsp.damselae were isolated. Microscopic examination mainly observed two parasites, Cryptocaryon irritans and Neobenedenia girellae. In virus detection, the red sea bream iridovirus (RSIV) was mainly detected in L. crocea. Statistical analysis showed that among the fish with detected pathogens, 55.81% (24/43) had bacterial infections, 37.21% (16/43) had parasitic infections, and 37.21% (16/43) had RSIV infections. Among them, five fish had mixed infections of bacteria and parasites, three had mixed infections of bacteria and viruses, three had mixed infections of parasites and viruses, and one L. crocea had mixed infections of viruses, bacteria, and parasites. Discussion: These findings indicate that these three major types of diseases are very common in the L. crocea farming area in Ningbo, implying the complexity of mixed infections of multiple diseases.


Asunto(s)
Enfermedades de los Peces , Perciformes , Animales , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/microbiología , Perciformes/microbiología , Perciformes/parasitología , China/epidemiología , Acuicultura , Vibrio/aislamiento & purificación , Vibrio/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética
10.
J Adv Res ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009133

RESUMEN

INTRODUCTION: Since the outbreak of COVID-19, microplastics (MPs) and triclosan in pharmaceuticals and personal care products (PPCPs) are markedly rising. MPs and triclosan are co-present in the environment, but their interactions and subsequent implications on the fate of triclosan in plants are not well understood. OBJECTIVE: This study aimed to investigate effects of charged polystyrene microplastics (PS-MPs) on the fate of triclosan in cabbage plants under a hydroponic system. METHODS: 14C-labeling method and liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (LC-QTOF-MS) analysis were applied to clarify the bioaccumulation, distribution, and metabolism of triclosan in hydroponics-cabbage system. The distribution of differentially charged PS-MPs in cabbage was investigated by confocal laser scanning microscopy and scanning electron microscopy. RESULTS: The results showed that MPs had a significant impact on bioaccumulation and metabolism of triclosan in hydroponics-cabbage system. PS-COO-, PS, and PS-NH3+ MPs decreased the bioaccumulation of triclosan in cabbage by 69.1 %, 81.5 %, and 87.7 %, respectively, in comparison with the non-MP treatment (control). PS-MPs also reduced the translocation of triclosan from the roots to the shoots in cabbage, with a reduction rate of 15.6 %, 28.3 %, and 65.8 % for PS-COO-, PS, and PS-NH3+, respectively. In addition, PS-NH3+ profoundly inhibited the triclosan metabolism pathways such as sulfonation, nitration, and nitrosation in the hydroponics-cabbage system. The above findings might be linked to strong adsorption between PS-NH3+ and triclosan, and PS-NH3+ may also potentially inhibit the growth of cabbage. Specially, the amount of triclosan adsorbed on PS-NH3+ was significantly greater than that on PS and PS-COO-. The cabbage biomass was reduced by 76.9 % in PS-NH3+ groups, in comparison with the control. CONCLUSION: The uptake and transformation of triclosan in hydroponics-cabbage system were significantly inhibited by charged PS-MPs, especially PS-NH3+. This provides new insights into the fate of triclosan and other PPCPs coexisted with microplastics for potential risk assessments.

11.
Environ Sci Pollut Res Int ; 30(54): 115585-115599, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37882928

RESUMEN

Small streams are essential parts of water ecosystems, such as rivers, lakes, and reservoirs, performing vital functions in the attenuation of nutrient pollution. As eutrophication becomes an increasingly severe problem in waters, it is necessary to investigate how to improve nutrient retention potential in streams. In this study, the effect of artificial manipulation was examined on transient storage and nutrient uptake in streams by setting up the stepping stone structures of flying-geese pattern (SG) and the combination mode of SG and bilaterally staggered spur dikes (SG+SD) in the channel. The tracer experiments were performed to confirm the effectiveness of SG and SG+SD in two headwater streams, which are tributaries of the Chaohu Lake basin. Additionally, the transient storage and nutrient uptake potential were assessed by the OTIS (one-dimensional transport with inflow and storage) model and the nutrient spiraling theory. Compared with the control, the implementation of SG in the Banqiao River increased the retention of ammonium (NH4+) and phosphate (PO43). Furthermore, the transient storage capacity and nutrient uptake potential in the Ershibu River were strengthened with the addition of bilaterally staggered spur dikes based on SG. These results highlight the importance of manipulating the geomorphology of the streambed to enhance the nutrient retention potential in streams.


Asunto(s)
Ecosistema , Ríos , Animales , Ríos/química , Gansos , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Nutrientes , Fósforo/análisis
12.
Sci Total Environ ; 905: 167166, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730034

RESUMEN

Bisphenol S (BPS), being structurally similar to bisphenol A (BPA), has been widely used as an alternative to BPA in industrial applications. However, in-depth studies on the environmental behavior and fate of BPS in various soils have been rarely reported. Here, 14C-labeled BPS was used to investigate its mineralization, bound residues (BRs) formation and extractable residues (ERs) in three soils for 64 days. Significant differences were found in the dissipation rates of BPS in three soils with different pH values. The dissipation of BPS followed pseudo first-order kinetics with half-lives (T1/2) of 15.2 ± 0.1 d, 27.0 ± 0.2 d, 180.4 ± 5.3 d, and 280.5 ± 3.3 d in the alkaline soil (fluvo-aquic soil, FS), the neutral soil (cinnamon soil, CS), the acidic soil (red soil, RS), and sterilized cinnamon soil (CS-S), respectively. The mineralization and BRs formation contributed the most to the dissipation of BPS in soil. BPS was persistent in acidic soil, and may pose a significant threat to plants grown in acidic soils. Additionally, soil microorganisms played a key role in BPS degradation, and the organic matter content might be a major factor that promotes the adsorption and degradation of BPS in soils. Two transformed products, P-hydroxybenzenesulfonic acid and methylated BPS were identified in soils. This study provides new insights into the fate of BPS in various soils, which will be useful for risk assessments of BPS in soil.

13.
IEEE Trans Image Process ; 31: 541-555, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34890330

RESUMEN

Copy-move forgery detection identifies a tampered image by detecting pasted and source regions in the same image. In this paper, we propose a novel two-stage framework specially for copy-move forgery detection. The first stage is a backbone self deep matching network, and the second stage is named as Proposal SuperGlue. In the first stage, atrous convolution and skip matching are incorporated to enrich spatial information and leverage hierarchical features. Spatial attention is built on self-correlation to reinforce the ability to find appearance similar regions. In the second stage, Proposal SuperGlue is proposed to remove false-alarmed regions and remedy incomplete regions. Specifically, a proposal selection strategy is designed to enclose highly suspected regions based on proposal generation and backbone score maps. Then, pairwise matching is conducted among candidate proposals by deep learning based keypoint extraction and matching, i.e., SuperPoint and SuperGlue. Integrated score map generation and refinement methods are designed to integrate results of both stages and obtain optimized results. Our two-stage framework unifies end-to-end deep matching and keypoint matching by obtaining highly suspected proposals, and opens a new gate for deep learning research in copy-move forgery detection. Experiments on publicly available datasets demonstrate the effectiveness of our two-stage framework.


Asunto(s)
Atención
14.
Biosens Bioelectron ; 209: 114263, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483214

RESUMEN

Clinical transplantation of human embryonic stem cells derived dopaminergic neurons (hESC-DDNs) is expected to be a potential therapy for treating neurodegenerative diseases. However, the assessment of the physiological functions, including electrophysiology and dopamine (DA) vesicular exocytosis of hESC-DDNs are not impeccable currently, which deeply limits the clinical application of hESC-DDNs. To overcome this challenge, we developed a multifunctional microelectrode array (MEA) which can detect both electrophysiological signals and DA vesicular exocytosis. The reduced oxidation graphene, poly(3,4-ethylenedioxythiophene) and poly (sodium-4-styrenesultanate) nanocomposites (rGO/PEDOT:PSS) were electrochemically deposited on the MEAs to improve their electrical characterizations with low impedance and small phase delay, and electrochemical characterizations with low oxidation potential, low detection limit, high sensitivity, wide linear range and high sensitivity. In the hESC-DDNs experiment, the modified MEA could detect electrophysiological signals with low noise (25 µV) and high signal-to-noise ratio (>5.4), and the weak current signals generated by DA vesicular exocytosis with high sensitivity (∼pA), high time resolution (sub-millisecond) and low noise (3 pA). Moreover, due to increased accuracy, the MEA could clearly distinguish two typical kinds of exocytosis spike events ("Spikes with foot" and "Spikes without foot") and found that the slow and low release through the fusion pore was an important mode of DA vesicular exocytosis in hESC-DDNs. Our work proved that the hESC-DDNs had the basic physiological functions as human dopaminergic neurons, which would be beneficial to the clinical application of the hESC-DDNs.


Asunto(s)
Técnicas Biosensibles , Células Madre Embrionarias Humanas , Dopamina , Neuronas Dopaminérgicas , Electrofisiología , Exocitosis , Humanos , Microelectrodos
15.
ACS Appl Mater Interfaces ; 14(13): 15736-15746, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35294190

RESUMEN

When it comes to mechanisms of brain functions such as learning and memory mediated by neural networks, existing multichannel electrophysiological detection and regulation technology at the cellular level does not suffice. To address this challenge, a 128-channel microelectrode array (MEA) was fabricated for electrical stimulation (ES) training and electrophysiological recording of the hippocampal neurons in vitro. The PEDOT:PSS/PtNPs-coated microelectrodes dramatically promote the recording and electrical stimulation performance. The MEA exhibited low impedance (10.94 ± 0.49 kohm), small phase delay (-12.54 ± 0.51°), high charge storage capacity (14.84 ± 2.72 mC/cm2), and high maximum safe injection charge density (4.37 ± 0.22 mC/cm2), meeting the specific requirements for training neural networks in vitro. A series of ESs at various frequencies was applied to the neuronal cultures in vitro, seeking the optimum training mode that enables the neuron to display the most obvious plasticity, and 1 Hz ES was determined. The network learning process, including three consecutive trainings, affected the original random spontaneous activity. Along with that, the firing pattern gradually changed to burst and the correlation and synchrony of the neuronal activity in the network have progressively improved, increasing by 314% and 240%, respectively. The neurons remembered these changes for at least 4 h. Collectively, ES activates the learning and memory functions of neurons, which is manifested in transformations in the discharge pattern and the improvement of network correlation and synchrony. This study offers a high-performance MEA revealing the underlying learning and memory functions of the brain and therefore serves as a useful tool for the development of brain functions in the future.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Neuronas , Hipocampo/fisiología , Microelectrodos , Neuronas/fisiología , Polímeros
16.
ACS Sens ; 7(2): 584-592, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35060694

RESUMEN

Both programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) are important proteins in cancer immunotherapy. Soluble forms (sPD-1 and sPD-L1) have potential for determining treatment and prognosis monitoring. However, there is a lack of detection methods for point-of-care testing (POCT) of these two proteins, so a low-cost rapid detection platform is urgently needed. To solve this problem, a dual-channel electrochemical platform, including a folding paper-based immunosensor and a POCT system for rapid simultaneous detection of these two proteins was designed and fabricated. The immunosensor consists of a three-electrode system and a reaction cell. The surface of the working electrode was modified with nanocomposites synthesized from amine-functionalized single-walled carbon nanotubes, new methylene blue, and gold nanoparticles. Antibodies to sPD-1 and sPD-L1 were also immobilized on the working electrode surface. A differential pulse voltammetry electrochemical method was adopted. The immunosensor was able to detect sPD-1 and sPD-L1 in the ranges of 50 pg/mL to 50 ng/mL and 5 pg/mL to 5 ng/mL, respectively. The limits of detection were 10 and 5 pg/mL. Using this detection platform, sPD-1 and sPD-L1 in plasma were detected by both enzyme-linked immunosorbent assay and the immunosensor, which has good application potential.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanotubos de Carbono , Antígeno B7-H1 , Oro , Inmunoensayo , Pruebas en el Punto de Atención
17.
Fish Shellfish Immunol ; 30(2): 600-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21193050

RESUMEN

T-cell surface glycoprotein CD8 consists of two distinguished chains, termed α and ß chains, and functions as a co-receptor for the T-cell receptor by binding to MHC class I proteins. In this study we report the cloning and identification of both CD8α and CD8ß genes from orange-spotted grouper (Epinephelus coioides). The predicted grouper CD8α and CD8ß proteins were structurally similar to other fish especially to those of Pleuronectiformes. Real-time RT-PCR revealed that the CD8 mRNA was much higher in the thymus than in other immune organs, and the expression level were very low in stomach, liver, and brain. During embryonic development of the grouper, the highest CD8 transcripts were detected in the multi-cell stage, followed by muscle burl stage, which suggested that the multi-cell stage may be critical in CD8 transcript synthesis. Moreover, CD8 mRNA levels were examined in lymphocytes at different time treated with lipopolysaccharide (LPS), polyriboinosinic polyribocytidylic acid (PolyI:C), phytohemagglutinin (PHA), and concanavalin A (ConA). The result showed that the CD8 mRNA levels were significantly affected in time-dependent manner by PolyI:C, PHA, and ConA, but not by LPS.


Asunto(s)
Antígenos CD8/genética , Antígenos CD8/inmunología , Regulación de la Expresión Génica/inmunología , Perciformes/genética , Perciformes/inmunología , Adyuvantes Inmunológicos/farmacología , Secuencia de Aminoácidos , Animales , Antígenos CD8/química , Clonación Molecular , Regulación de la Expresión Génica/efectos de los fármacos , Orden Génico , Linfocitos/efectos de los fármacos , Datos de Secuencia Molecular , Perciformes/embriología , Alineación de Secuencia
18.
Zhongguo Yi Liao Qi Xie Za Zhi ; 35(1): 50-2, 2011 Jan.
Artículo en Zh | MEDLINE | ID: mdl-21553538

RESUMEN

This paper designed a ventilator control system to control proportional valves and motors. It used LabVIEW to control the object mentioned above and design ,validate, evaluate arithmetic, and establish hardware in loop platform. There are two system' s hierarchies. The high layer was used to run non-real time program and the low layer was used to run real time program. The two layers communicated through TCP/IP net. The program can be divided into several modules, which can be expanded and maintained easily. And the harvest in the prototype designing can be seamlessly used to embedded products. From all above, this system was useful in employing OEM products.


Asunto(s)
Diseño de Software , Programas Informáticos , Ventiladores Mecánicos , Sistemas Hombre-Máquina
19.
Int Immunopharmacol ; 99: 107933, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34224993

RESUMEN

T cell immunoglobulin and mucin domain 3 (TIM-3) was originally found to be expressed on the surface of Th1 cells, acting as a negative regulator and binding to the ligand galectin-9 to mediate Th1 cell the apoptosis. Recent studies have shown that TIM-3 is also expressed on other immune cells, such as macrophages, dendritic cells, and monocytes. In addition, TIM-3 ligands also include Psdter, High Mobility Group Box 1 (HMGB1) and Carcinoembryonic antigen associated cell adhesion molecules (Ceacam-1), which have different effects upon biding to different ligands on immune cells. Studies have shown that TIM-3 plays an important role in autoimmune diseases, chronic viral infections and tumors. A large amount of experimental data supports TIM-3 as an immune checkpoint, and targeting TIM-3 is a promising treatment method in current immunotherapy, especially the new combination of other immune checkpoint blockers. In this review, we summarize the role of TIM-3 in different diseases and its possible signaling pathway mechanisms, providing new insights for better breakthrough immunotherapy.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Biomarcadores/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Inhibidores de Puntos de Control Inmunológico/metabolismo , Neoplasias/metabolismo , Virosis/metabolismo , Animales , Antígenos CD/metabolismo , Antígeno Carcinoembrionario/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Galectinas/metabolismo , Glicosilación , Proteína HMGB1/metabolismo , Humanos , Tolerancia Inmunológica , Inmunoterapia , Ligandos , Unión Proteica , Transducción de Señal , Células TH1
20.
IEEE Trans Biomed Eng ; 68(1): 19-25, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32356734

RESUMEN

OBJECTIVE: Epilepsy affects 50 million people worldwide and its pathogenesis is still unknown. In particular, the movement-related neural activities involving glutamate (Glu) and electrophysiological signals at cellular level remains unclear. METHODS: A cellular-scale implantable microelectrode array (MEA) was fabricated to detect the movement-related neural activities involving Glu concentration and electrophysiological signals. Platinum and reduced graphene oxide nanocomposites were deposited to enhance the surface area. Glu oxidase (Gluox) were coated to effectively recognize Glu molecule. RESULTS: Neural activities in the hippocampus of normal and epileptic mice is different, and the changes are closely connected with movement. Glu concentration and spike firing rate in the epileptic mice were much higher than those in the normal ones. And the neural activities with significant synchronization were detected in the epileptic mice even without seizure occurrence. Meanwhile, the spikes fire more intensively and Glu level became much higher during the movement of the mice compared to the stationary state. CONCLUSION: The existing abnormality of neural activities in the epileptic mice are potential factors to induce a seizure. Movement may impact the neural activities and the duration of seizure. SIGNIFICANCE: The MEA can monitor changes of movement, Glu and neuron discharges synchronously and provides us an effective technology to understand the neuronal disease.


Asunto(s)
Epilepsia , Vigilia , Animales , Hipocampo , Ratones , Microelectrodos , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA