Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Cancer ; 24(1): 936, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090564

RESUMEN

PURPOSE: To evaluate the dosimetric characteristics of ZAP-X stereotactic radiosurgery (SRS) for single brain metastasis by comparing with two mature SRS platforms. METHODS: Thirteen patients with single brain metastasis treated with CyberKnife (CK) G4 were selected retrospectively. The prescription dose for the planning target volume (PTV) was 18-24 Gy for 1-3 fractions. The PTV volume ranged from 0.44 to 11.52 cc.Treatment plans of thirteen patients were replanned using the ZAP-X plan system and the Gamma Knife (GK) ICON plan system with the same prescription dose and organs at risk (OARs) constraints. The prescription dose of PTV was normalized to 70% for both ZAP-X and CK, while it was 50% for GK. The dosimetric parameters of three groups included the plan characteristics (CI, GI, GSI, beams, MUs, treatment time), PTV (D2, D95, D98, Dmin, Dmean, Coverage), brain tissue (volume of 100%-10% prescription dose irradiation V100%-V10%, Dmean) and other OARs (Dmax, Dmean),all of these were compared and evaluated. All data were read and analyzed with MIM Maestro. One-way ANOVA or a multisample Friedman rank sum test was performed, where p < 0.05 indicated significant differences. RESULTS: The CI of GK was significantly lower than that of ZAP-X and CK. Regarding the mean value, ZAP-X had a lower GI and higher GSI, but there was no significant difference among the three groups. The MUs of ZAP-X were significantly lower than those of CK, and the mean value of the treatment time of ZAP-X was significantly shorter than that of CK. For PTV, the D95, D98, and target coverage of CK were higher, while the mean of Dmin of GK was significantly lower than that of CK and ZAP-X. For brain tissue, ZAP-X showed a smaller volume from V100% to V20%; the statistical results of V60% and V50% showed a difference between ZAP-X and GK, while the V40% and V30% showed a significant difference between ZAP-X and the other two groups; V10% and Dmean indicated that GK was better. Excluding the Dmax of the brainstem, right optic nerve and optic chiasm, the mean value of all other OARs was less than 1 Gy. For the brainstem, GK and ZAP-X had better protection, especially at the maximum dose. CONCLUSION: For the SRS treating single brain metastasis, all three treatment devices, ZAP-X system, CyberKnife G4 system, and GammaKnife system, could meet clinical treatment requirements. The newly platform ZAP-X could provide a high-quality plan equivalent to or even better than CyberKnife and Gamma Knife, with ZAP-X presenting a certain dose advantage, especially with a more conformal dose distribution and better protection for brain tissue. As the ZAP-X systems get continuous improvements and upgrades, they may become a new SRS platform for the treatment of brain metastasis.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Radiocirugia/métodos , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Masculino , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Femenino , Persona de Mediana Edad , Radiometría , Anciano , Adulto , Órganos en Riesgo/efectos de la radiación
2.
J Appl Clin Med Phys ; : e14471, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102876

RESUMEN

PURPOSE: To investigate the dose rate dependence of MapCHECK3 and its influence on measurement accuracy, as well as the effect of dose rate correction. MATERIALS AND METHODS: The average and instantaneous dose rate dependence of MapCHECK2 and MapCHECK3 were studied. The accuracy of measurements was investigated where the dose rate differed significantly between dose calibration of the MapCHECK and the measurement. Measurements investigated include: the central axis dose for different fields at different depths, off-axis doses outside the field, and off-axis doses along the wedge direction. Measurements using an ion chamber were taken as the reference. Exponential functions were fit to account for average and instantaneous dose rate dependence for MapCHECK3 and used for dose rate correction. The effect of the dose rate correction was studied by comparing the differences between the measurements for MapCHECK (with and without the correction) and the reference. RESULTS: The maximum dose rate dependence of MapCHECK3 is greater than 2.5%. If the dose calibration factor derived from a 10 × 10 cm2 open field at 10 cm depth was used for measurements, the average differences in central diode dose were 0.8% ± 1.0% and 1.0% ± 0.8% for the studied field sizes and measurement depths, respectively. The introduction of wedge would not only induce -1.8% ± 1.3% difference in central diode dose, but also overestimate the effective wedge angle. After the instantaneous dose rate correction, above differences can be changed to 1.9% ± 8.1%, 0.2% ± 0.1%, and 0.0% ± 0.9%. The pass rate can be improved from 98.4% to 98.8%, 98.3%-100.0%, and 96.3%-100.0%, respectively. CONCLUSION: Compared with MapCHECK2 (SunPoint1 diodes), the more pronounced dose rate dependence of MapCHECK3 (SunPoint2 diodes) should be carefully considered. To ensure highly accurate measurement, it is suggested to perform the dose calibration at the same condition where measurement will be performed. Otherwise, the dose rate correction should be applied.

3.
Phys Med Biol ; 69(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38722545

RESUMEN

Objective.In this work, we aim to propose an accurate and robust spectrum estimation method by synergistically combining x-ray imaging physics with a convolutional neural network (CNN).Approach.The approach relies on transmission measurements, and the estimated spectrum is formulated as a convolutional summation of a few model spectra generated using Monte Carlo simulation. The difference between the actual and estimated projections is utilized as the loss function to train the network. We contrasted this approach with the weighted sums of model spectra approach previously proposed. Comprehensive studies were performed to demonstrate the robustness and accuracy of the proposed approach in various scenarios.Main results.The results show the desirable accuracy of the CNN-based method for spectrum estimation. The ME and NRMSE were -0.021 keV and 3.04% for 80 kVp, and 0.006 keV and 4.44% for 100 kVp, superior to the previous approach. The robustness test and experimental study also demonstrated superior performances. The CNN-based approach yielded remarkably consistent results in phantoms with various material combinations, and the CNN-based approach was robust concerning spectrum generators and calibration phantoms.Significance. We proposed a method for estimating the real spectrum by integrating a deep learning model with real imaging physics. The results demonstrated that this method was accurate and robust in estimating the spectrum, and it is potentially helpful for broad x-ray imaging tasks.


Asunto(s)
Método de Montecarlo , Redes Neurales de la Computación , Fantasmas de Imagen , Rayos X , Procesamiento de Imagen Asistido por Computador/métodos
4.
Phys Eng Sci Med ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080208

RESUMEN

Gamma Knife radiosurgery (GKRS) is a well-established technique in radiation therapy (RT) for treating small-size brain tumors. It administers highly concentrated doses during each treatment fraction, with even minor dose errors posing a significant risk of causing severe damage to healthy tissues. It underscores the critical need for precise and meticulous precision in GKRS. However, the planning process for GKRS is complex and time-consuming, heavily reliant on the expertise of medical physicists. Incorporating deep learning approaches for GKRS dose prediction can reduce this dependency, improve planning efficiency and homogeneity, streamline clinical workflows, and reduce patient lagging times. Despite this, precise Gamma Knife plan dose distribution prediction using existing models remains a significant challenge. The complexity stems from the intricate nature of dose distributions, subtle contrasts in CT scans, and the interdependence of dosimetric metrics. To overcome these challenges, we have developed a "Cascaded-Deep-Supervised" Convolutional Neural Network (CDS-CNN) that employs a hybrid-weighted optimization scheme. Our innovative method incorporates multi-level deep supervision and a strategic sequential multi-network training approach. It enables the extraction of intra-slice and inter-slice features, leading to more realistic dose predictions with additional contextual information. CDS-CNN was trained and evaluated using data from 105 brain cancer patients who underwent GKRS treatment, with 85 cases used for training and 20 for testing. Quantitative assessments and statistical analyses demonstrated high consistency between the predicted dose distributions and the reference doses from the treatment planning system (TPS). The 3D overall gamma passing rates (GPRs) reached 97.15% ± 1.36% (3 mm/3%, 10% threshold), surpassing the previous best performance by 2.53% using the 3D Dense U-Net model. When evaluated against more stringent criteria (2 mm/3%, 10% threshold, and 1 mm/3%, 10% threshold), the overall GPRs still achieved 96.53% ± 1.08% and 95.03% ± 1.18%. Furthermore, the average target coverage (TC) was 98.33% ± 1.16%, dose selectivity (DS) was 0.57 ± 0.10, gradient index (GI) was 2.69 ± 0.30, and homogeneity index (HI) was 1.79 ± 0.09. Compared to the 3D Dense U-Net, CDS-CNN predictions demonstrated a 3.5% improvement in TC, and CDS-CNN's dose prediction yielded better outcomes than the 3D Dense U-Net across all evaluation criteria. The experimental results demonstrated that the proposed CDS-CNN model outperformed other models in predicting GKRS dose distributions, with predictions closely matching the TPS doses.

5.
Elife ; 122024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236718

RESUMEN

As the genome is organized into a three-dimensional structure in intracellular space, epigenomic information also has a complex spatial arrangement. However, most epigenetic studies describe locations of methylation marks, chromatin accessibility regions, and histone modifications in the horizontal dimension. Proper spatial epigenomic information has rarely been obtained. In this study, we designed spatial chromatin accessibility sequencing (SCA-seq) to resolve the genome conformation by capturing the epigenetic information in single-molecular resolution while simultaneously resolving the genome conformation. Using SCA-seq, we are able to examine the spatial interaction of chromatin accessibility (e.g. enhancer-promoter contacts), CpG island methylation, and spatial insulating functions of the CCCTC-binding factor. We demonstrate that SCA-seq paves the way to explore the mechanism of epigenetic interactions and extends our knowledge in 3D packaging of DNA in the nucleus.


Asunto(s)
Cromatina , Epigenómica , Cromatina/genética , Cromosomas , ADN , Secuencias Reguladoras de Ácidos Nucleicos , Metilación de ADN
6.
Cancer Res ; 84(11): 1915-1928, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38536129

RESUMEN

T cells recognize tumor antigens and initiate an anticancer immune response in the very early stages of tumor development, and the antigen specificity of T cells is determined by the T-cell receptor (TCR). Therefore, monitoring changes in the TCR repertoire in peripheral blood may offer a strategy to detect various cancers at a relatively early stage. Here, we developed the deep learning framework iCanTCR to identify patients with cancer based on the TCR repertoire. The iCanTCR framework uses TCRß sequences from an individual as an input and outputs the predicted cancer probability. The model was trained on over 2,000 publicly available TCR repertoires from 11 types of cancer and healthy controls. Analysis of several additional publicly available datasets validated the ability of iCanTCR to distinguish patients with cancer from noncancer individuals and demonstrated the capability of iCanTCR for the accurate classification of multiple cancers. Importantly, iCanTCR precisely identified individuals with early-stage cancer with an AUC of 86%. Altogether, this work provides a liquid biopsy approach to capture immune signals from peripheral blood for noninvasive cancer diagnosis. SIGNIFICANCE: Development of a deep learning-based method for multicancer detection using the TCR repertoire in the peripheral blood establishes the potential of evaluating circulating immune signals for noninvasive early cancer detection.


Asunto(s)
Aprendizaje Profundo , Detección Precoz del Cáncer , Neoplasias , Receptores de Antígenos de Linfocitos T , Humanos , Neoplasias/inmunología , Neoplasias/sangre , Neoplasias/diagnóstico , Receptores de Antígenos de Linfocitos T/inmunología , Detección Precoz del Cáncer/métodos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
7.
Nat Commun ; 15(1): 7101, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155292

RESUMEN

The inference of cell-cell communication (CCC) is crucial for a better understanding of complex cellular dynamics and regulatory mechanisms in biological systems. However, accurately inferring spatial CCCs at single-cell resolution remains a significant challenge. To address this issue, we present a versatile method, called DeepTalk, to infer spatial CCC at single-cell resolution by integrating single-cell RNA sequencing (scRNA-seq) data and spatial transcriptomics (ST) data. DeepTalk utilizes graph attention network (GAT) to integrate scRNA-seq and ST data, which enables accurate cell-type identification for single-cell ST data and deconvolution for spot-based ST data. Then, DeepTalk can capture the connections among cells at multiple levels using subgraph-based GAT, and further achieve spatially resolved CCC inference at single-cell resolution. DeepTalk achieves excellent performance in discovering meaningful spatial CCCs on multiple cross-platform datasets, which demonstrates its superior ability to dissect cellular behavior within intricate biological processes.


Asunto(s)
Comunicación Celular , Análisis de la Célula Individual , Transcriptoma , Análisis de la Célula Individual/métodos , Humanos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Animales , Algoritmos , Biología Computacional/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA