Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848533

RESUMEN

The liver plays a crucial role in maintaining systemic iron homeostasis by secreting hepcidin, which is essential for coordinating iron levels in the body. Imbalances in iron homeostasis are associated with various clinical disorders related to iron deficiency or iron overload. Despite the clinical significance, the mechanisms underlying how hepatocytes sense extracellular iron levels to regulate hepcidin synthesis and iron storage are not fully understood. In this study, we identified Foxo1, a well-known regulator of macronutrient metabolism, that translocates to the nucleus of hepatocytes in response to high-iron feeding, holo-transferrin, and BMP6 treatment. Furthermore, Foxo1 plays a crucial role in mediating hepcidin induction in response to both iron and BMP signals by directly interacting with evolutionally conserved Foxo binding sites within the hepcidin promoter region. These binding sites were found to colocalize with Smad-binding sites. To investigate the physiological relevance of Foxo1 in iron metabolism, we generated mice with hepatocyte-specific deletion of Foxo1. These mice exhibited reduced hepatic hepcidin expression and serum hepcidin levels, accompanied by elevated serum iron and liver non-heme iron concentrations. Moreover, high-iron diet further exacerbated these abnormalities in iron metabolism in mice lacking hepatic Foxo1. Conversely, hepatocyte-specific Foxo1 overexpression increased hepatic hepcidin expression and serum hepcidin levels, thereby ameliorating iron overload in a murine model of hereditary hemochromatosis (Hfe-/- mice). In summary, our study identifies Foxo1 is a critical regulator of hepcidin and systemic iron homeostasis. Targeting Foxo1 may offer therapeutic opportunities for managing conditions associated with aberrant iron metabolism.

2.
EMBO Rep ; 24(3): e55536, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36705069

RESUMEN

The cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) axis is the predominant DNA sensing system in cells of the innate immune system. However, human T cells also express high levels of STING, while its role and physiological trigger remain largely unknown. Here, we show that the cGAS-STING pathway is indeed functional in human primary T cells. In the presence of a TCR-engaging signal, both cGAS and STING activation switches T cells into type I interferon-producing cells. However, T cell function is severely compromised following STING activation, as evidenced by increased cell death, decreased proliferation, and impaired metabolism. Interestingly, these different phenotypes bifurcate at the level of STING. While antiviral immunity and cell death require the transcription factor interferon regulatory factor 3 (IRF3), decreased proliferation is mediated by STING independently of IRF3. In summary, we demonstrate that human T cells possess a functional cGAS-STING signaling pathway that can contribute to antiviral immunity. However, regardless of its potential antiviral role, the activation of the cGAS-STING pathway negatively affects T cell function at multiple levels. Taken together, these results could help inform the future development of cGAS-STING-targeted immunotherapies.


Asunto(s)
Interferón Tipo I , Nucleotidiltransferasas , Humanos , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Antivirales , Linfocitos T , Inmunidad Innata
3.
Eur Heart J ; 45(4): 287-305, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-37992083

RESUMEN

BACKGROUND AND AIMS: Stanford type A aortic dissection (AD) is a degenerative aortic remodelling disease marked by an exceedingly high mortality without effective pharmacologic therapies. Smooth muscle cells (SMCs) lining tunica media adopt a range of states, and their transformation from contractile to synthetic phenotypes fundamentally triggers AD. However, the underlying pathomechanisms governing this population shift and subsequent AD, particularly at distinct disease temporal stages, remain elusive. METHODS: Ascending aortas from nine patients undergoing ascending aorta replacement and five individuals undergoing heart transplantation were subjected to single-cell RNA sequencing. The pathogenic targets governing the phenotypic switch of SMCs were identified by trajectory inference, functional scoring, single-cell regulatory network inference and clustering, regulon, and interactome analyses and confirmed using human ascending aortas, primary SMCs, and a ß-aminopropionitrile monofumarate-induced AD model. RESULTS: The transcriptional profiles of 93 397 cells revealed a dynamic temporal-specific phenotypic transition and marked elevation of the activator protein-1 (AP-1) complex, actively enabling synthetic SMC expansion. Mechanistically, tumour necrosis factor signalling enhanced AP-1 transcriptional activity by dampening mitochondrial oxidative phosphorylation (OXPHOS). Targeting this axis with the OXPHOS enhancer coenzyme Q10 or AP-1-specific inhibitor T-5224 impedes phenotypic transition and aortic degeneration while improving survival by 42.88% (58.3%-83.3% for coenzyme Q10 treatment), 150.15% (33.3%-83.3% for 2-week T-5224), and 175.38% (33.3%-91.7% for 3-week T-5224) in the ß-aminopropionitrile monofumarate-induced AD model. CONCLUSIONS: This cross-sectional compendium of cellular atlas of human ascending aortas during AD progression provides previously unappreciated insights into a transcriptional programme permitting aortic degeneration, highlighting a translational proof of concept for an anti-remodelling intervention as an attractive strategy to manage temporal-specific AD by modulating the tumour necrosis factor-OXPHOS-AP-1 axis.


Asunto(s)
Enfermedades de la Aorta , Disección Aórtica , Benzofenonas , Isoxazoles , Enfermedades Vasculares , Humanos , Factor de Transcripción AP-1 , Aminopropionitrilo , Estudios Transversales , Disección Aórtica/genética , Enfermedades de la Aorta/patología , Enfermedades Vasculares/patología , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/fisiología , Factores de Necrosis Tumoral
4.
Nano Lett ; 24(9): 2727-2734, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38395052

RESUMEN

Noncolinear spin textures, including chiral stripes and skyrmions, have shown great potential in spintronics. Basic configurations of spin textures are either Bloch or Néel types, and the intermediate hybrid type has rarely been reported. A major challenge in identifying hybrid spin textures is to quantitatively determine the hybrid angle, especially in ferrimagnets with weak net magnetization. Here, we develop an approach to quantify magnetic parameters, including chirality, saturation magnetization, domain wall width, and hybrid angle with sub-5 nm spatial resolution, based on Lorentz four-dimensional scanning transmission electron microscopy (Lorentz 4D-STEM). We find strong nanometer-scale variations in the hybrid angle and domain wall width within structurally and chemically homogeneous FeGd ferrimagnetic films. These variations fluctuate during different magnetization circles, revealing intrinsic local magnetization inhomogeneities. Furthermore, hybrid skyrmions can also be nucleated in FeGd films. These analyses demonstrate that the Lorentz 4D-STEM is a quantitative tool for exploring complex spin textures.

5.
Nano Lett ; 24(2): 632-639, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38175932

RESUMEN

Electrical control of magnetism is highly desirable for energy-efficient spintronic applications. Realizing electric-field-driven perpendicular magnetization switching has been a long-standing goal, which, however, remains a major challenge. Here, electric-field control of perpendicularly magnetized ferrimagnetic order via strain-mediated magnetoelectric coupling is reported. We show that the gate voltages isothermally toggle the dominant magnetic sublattice of the compensated ferrimagnet FeTb at room temperature, showing high reversibility and good endurance under ambient conditions. By implementing this strategy in FeTb/Pt/Co spin valves with giant magnetoresistance (GMR), we demonstrate that the distinct high and low resistance states can be selectively controlled by the gate voltages with assisting magnetic fields. Our results provide a promising route to use ferrimagnets for developing electric-field-controlled, low-power memory and logic devices.

6.
Mol Cancer ; 23(1): 55, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491348

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as key players in tumorigenesis and tumour progression. However, the biological functions and potential mechanisms of lncRNAs in colorectal cancer (CRC) are unclear. METHODS: The novel lncRNA POU6F2-AS1 was identified through bioinformatics analysis, and its expression in CRC patients was verified via qRT-PCR and FISH. In vitro and in vivo experiments, such as BODIPY staining, Oil Red O staining, triglyceride (TAG) assays, and liquid chromatography mass spectrometry (LC-MS) were subsequently performed with CRC specimens and cells to determine the clinical significance, and functional roles of POU6F2-AS1. Biotinylated RNA pull-down, RIP, Me-RIP, ChIP, and patient-derived organoid (PDO) culture assays were performed to confirm the underlying mechanism of POU6F2-AS1. RESULTS: The lncRNA POU6F2-AS1 is markedly upregulated in CRC and associated with adverse clinicopathological features and poor overall survival in CRC patients. Functionally, POU6F2-AS1 promotes the growth and lipogenesis of CRC cells both in vitro and in vivo. Mechanistically, METTL3-induced m6A modification is involved in the upregulation of POU6F2-AS1. Furthermore, upregulated POU6F2-AS1 could tether YBX1 to the FASN promoter to induce transcriptional activation, thus facilitating the growth and lipogenesis of CRC cells. CONCLUSIONS: Our data revealed that the upregulation of POU6F2-AS1 plays a critical role in CRC fatty acid metabolism and might provide a novel promising biomarker and therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba , Línea Celular Tumoral , Proliferación Celular/genética , MicroARNs/genética , Neoplasias Colorrectales/patología , Ácidos Grasos , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Metiltransferasas/metabolismo , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo
7.
Ann Hematol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662205

RESUMEN

The prognosis of patients diagnosed with relapsed or refractory (R/R) T-lymphoblastic leukemia/lymphoma (T-ALL/LBL) has consistently been unsatisfactory, with limited treatment options. As reports, the CAG regimen can serve as a salvage treatment for R/R T-ALL/LBL, but there remains a subset of patients who do not benefit from it. Recent studies have indicated that daratumumab (Dara) and venetoclax (Ven) may offer promising therapeutic benefits for T-ALL/LBL. In light of these findings, we conducted a safety and efficacy evaluation of the enhanced treatment regimen, combining Dara and Ven with aclarubicin, cytarabine, granulocyte colony-stimulating factor, and etoposide (CAGE), in patients suffering from R/R T-ALL/LBL. The participants in this phase I trial were patients with R/R T-ALL/LBL who fail to standard treatment regimens. During each 28-day cycle, the patients were treated by Dara, Ven, cytarabine, aclarubicin, granulocyte colony-stimulating factor, etoposide. The primary endpoint of this study was the rate of remission. This report presents the prospective outcomes of 21 patients who received the salvage therapy of Dara and Ven combined with the CAGE regimen (Dara + Ven + CAGE). The objective remission rate (ORR) was determined to be 57.1%, while the complete remission (CR) rate was 47.6%. Notably, patients with the early T-cell precursor (ETP) subtype exhibited a significantly higher remission rate in the bone marrow compared to non-ETP patients (100% vs. 44.4%, p = 0.044). The Dara + Ven + CAGE regimen demonstrated a favorable remission rate in patients with R/R T-ALL/LBL. Moreover, the treatment was well-tolerated.

8.
Anal Chem ; 95(38): 14375-14383, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37710979

RESUMEN

Rapid and accurate antimicrobial prescriptions are critical for bloodstream infection (BSI) patients, as they can guide drug use and decrease mortality significantly. The traditional antimicrobial susceptibility testing (AST) for BSI is time-consuming and tedious, taking 2-3 days. Avoiding lengthy monoclonal cultures and shortening the drug sensitivity incubation time are keys to accelerating the AST. Here, we introduced a bacteria separation integrated AST (BSI-AST) chip, which could extract bacteria directly from positive blood cultures (PBCs) within 10 min and quickly give susceptibility information within 3 h. The integrated chip includes a bacteria separation chamber, multiple AST chambers, and connection channels. The separator gel was first preloaded into the bacteria separation chamber, enabling the swift separation of bacteria cells from PBCs through on-chip centrifugation. Then, the bacteria suspension was distributed in the AST chambers with preloaded antibiotics through a quick vacuum-assisted aliquoting strategy. Through centrifuge-assisted on-chip enrichment, detectable growth of the phenotype under different antibiotics could be easily observed in the taper tips of AST chambers within a few hours. As a proof of concept, direct AST from artificial PBCs with Escherichia coli against 18 antibiotics was performed on the BSI-AST chip, and the whole process from bacteria extraction to AST result output was less than 3.5 h. Moreover, the integrated chip was successfully applied to the diagnosis of clinical PBCs, showing 93.3% categorical agreement with clinical standard methods. The reliable and fast pathogen characterization of the integrated chip suggested its great potential application in clinical diagnosis.


Asunto(s)
Cultivo de Sangre , Sepsis , Humanos , Microfluídica , Antibacterianos/farmacología , Centrifugación , Escherichia coli
9.
Small ; : e2308541, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38059851

RESUMEN

Aqueous Zn-ion batteries (ZIBs) are promising candidates for large-scale energy storage due to high safety, abundant reserves, low-cost, and high energy density. However, the reversibility of the metallic Zn anode in the mild electrolyte is still unsatisfactory, due to the Zn dendrite growth, hydrogen evolution, and corrosion passivation. Herein, a Zn-In alloying powder solvent free electrode is proposed to replace the Zn foil in ZIBs. The novel Zn anodes are constructed by a solvent-free manufacturing process with carbons, forming a 3D Zn deposition network and providing uniformly electric field distribution. The In on the Zn powder surface can increase the overpotential for hydrogen evolution and further improve the morphology of Zn deposition against dendrite growth. The Zn solvent-free electrodes enable the Zn-MnO2 batteries with high cathode loading mass of 10-20 mg cm-2 to achieve >380 stable cycles. Furthermore, the assembled soft package batteries of 2.4 Ah (52 Wh kg-2 ) is evaluated and the capacity retention is maintained at 80% after 200 cycles at a high areal capacity of 5 mAh cm-2 without gas evolution. This work offers a workable strategy to develop a durable Zn anode for the eventually commercial applications of aqueous Zn-Mn secondary batteries.

10.
Org Biomol Chem ; 21(15): 3096-3100, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36974750

RESUMEN

Activated vinylcyclopropanes can form zwitterionic π-allylmetal species in the presence of transition metals and are widely used in organic synthesis. A nickel-catalyzed asymmetric allylation of secondary phosphine oxides with vinylcyclopropanes was described. Tertiary phosphine oxide products could be obtained with up to 91% yield and 92% ee.

11.
Ecotoxicol Environ Saf ; 255: 114807, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948011

RESUMEN

Polyphenols, as an important category of natural organics, are ubiquitous in plants and structurally diverse. Batch experiments were conducted to investigate the role of natural polyphenol, such as gallic acid (GA) and tannic acid (TA), in the biochemical behavior of Cr(VI) in soil media. GA and TA can effectively convert Cr(VI) to Cr(III) under neutral conditions (pH 7.0). However, there are significant differences in the transport, leaching toxicity, and bioavailability of reduced Cr(III) between the two systems. UV-vis spectra, chromium (Cr) mass balance, speciation distribution, and X-ray photoelectron spectroscopy were used to explore the intrinsic mechanisms of Cr(VI) reduction and (im)mobilization in the presence of GA or TA. Results showed that the reduction of Cr(VI) by GA was accompanied by poor immobilization of reduced Cr(III), especially at high GA concentrations (4-10 g/L), which was associated with the formation of soluble Cr(III) complexes. After treatment with 4 g/L GA, 51.49 ± 3.04% of the Cr in GA system was mobilized as complexes into aqueous phase. In contrast, the reduction of Cr(VI) and the subsequent precipitation of reduced Cr(III) was dominant in the TA system. After treatment with 4 g/L TA, 97.24 ± 0.31% of the total Cr in the TA system was immobilized into soil phase and transformed into more stable fractions. Our findings provide new insights into how natural organics shape the fate and transport of Cr in soils, which also have substantial implications for the development of Cr sequestration technology.


Asunto(s)
Polifenoles , Contaminantes del Suelo , Contaminación Ambiental , Cromo/análisis , Suelo/química , Contaminantes del Suelo/análisis , Taninos
12.
Yi Chuan ; 45(11): 1028-1038, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764268

RESUMEN

Clostridioides difficile (CD) is one of the most common pathogens causing health-care-associated infectious diarrhea and is listed by the U.S. Centers for Disease Control and Prevention as an urgent antibiotic resistance (AR) threat. Many resistance genes can be transferred between different CD strains present in the clinical setting, community, and environment. The antimicrobial resistance (AMR) of CD continues to evolve with the emergence and acquisition of new drug resistance mechanisms. CD has developed diverse drug resistance mechanisms, such as drug alteration, modification of the target site, and extrusion of drugs via efflux pumps. Researches have provided comprehensive knowledge about resistance mechanisms of macrolides and quinolones in CD. However, the mechanisms of resistance for metronidazole, vancomycin, and other therapeutic antibiotics against Clostridioides difficile infection (CDI) are only beginning to be elucidated. Some previously unfound mechanisms, such as plasmid-mediated drug resistance in CD, may also play an important role. In this review, we summarize the research progress on drug resistance mechanisms of CD with antimicrobial drugs already used clinically, such as metronidazole, vancomycin, and fidaxomicin, thereby providing the references for the clinical treatment and prevention of CDI, as well as the development of new antibacterial drugs and detection kits for drug resistant bacteria.


Asunto(s)
Antibacterianos , Clostridioides difficile , Infecciones por Clostridium , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Antibacterianos/farmacología , Humanos , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/tratamiento farmacológico , Farmacorresistencia Bacteriana/genética , Metronidazol/farmacología , Vancomicina/farmacología
13.
J Transl Med ; 20(1): 575, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482449

RESUMEN

BACKGROUND: Bloodstream infection (BSI) is a significant cause of mortality among patients with fever of unknown origin (FUO). Inappropriate empiric antimicrobial therapy increases difficulty in BSI diagnosis and treatment. Knowing the risk of BSI at early stage may help improve clinical outcomes and reduce antibiotic overuse. METHODS: We constructed a multivariate prediction model based on clinical features and serum inflammatory markers using a cohort of FUO patients over a 5-year period by Least Absolute Shrinkage and Selection Operator (LASSO) and logistic regression. RESULTS: Among 712 FUO patients, BSI was confirmed in 55 patients. Five independent predictors available within 24 h after admission for BSI were identified: presence of diabetes mellitus, chills, C-reactive protein level of 50-100 mg/L, procalcitonin > 0.3 ng/mL, neutrophil percentage > 75%. A predictive score incorporating these 5 variables has adequate concordance with an area under the curve of 0.85. The model showed low positive predictive value (22.6%), but excellent negative predictive value (97.4%) for predicting the risk of BSI. The risk of BSI reduced to 2.0% in FUO patients if score < 1.5. CONCLUSIONS: A simple tool based on 5 variables is useful for timely ruling out the individuals at low risk of BSI in FUO population.


Asunto(s)
Fiebre de Origen Desconocido , Sepsis , Humanos , Fiebre de Origen Desconocido/complicaciones
14.
PLoS Pathog ; 16(8): e1008705, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32853291

RESUMEN

The recent outbreak of human infections caused by SARS-CoV-2, the third zoonotic coronavirus has raised great public health concern globally. Rapid and accurate diagnosis of this novel pathogen posts great challenges not only clinically but also technologically. Metagenomic next-generation sequencing (mNGS) and reverse-transcription PCR (RT-PCR) have been the most commonly used molecular methodologies. However, each has their own limitations. In this study, we developed an isothermal, CRISPR-based diagnostic for COVID-19 with near single-copy sensitivity. The diagnostic performances of all three technology platforms were also compared. Our study aimed to provide more insights into the molecular detection of SARS-CoV-2, and also to present a novel diagnostic option for this new emerging virus.


Asunto(s)
Betacoronavirus/genética , Sistemas CRISPR-Cas/genética , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/genética , Neumonía Viral/diagnóstico , Neumonía Viral/genética , Bacterias/genética , COVID-19 , Prueba de COVID-19 , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genes Virales/genética , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Técnicas de Diagnóstico Molecular/economía , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/economía , Técnicas de Amplificación de Ácido Nucleico/métodos , Pandemias , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , SARS-CoV-2 , Sensibilidad y Especificidad
15.
Clin Chem ; 68(8): 1064-1074, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35714147

RESUMEN

BACKGROUND: The battle against Helicobacter pylori (H. pylori) infections demands fast, reliable, and sensitive methods for pathogen identification (ID), antimicrobial susceptibility tests (ASTs) based on metabolic response, and genome-wide mutation profiling that reveals resistance mechanisms. METHODS: Here we introduce Clinical Antimicrobial Susceptibility Test Ramanometry for H. pylori (CAST-R-HP), and its validation with clinical samples. This method performs rapid ID, metabolism inhibition-based AST, and high-quality whole-genome sequencing for cells of targeted resistance phenotype, all at precisely 1-cell resolution and directly from biopsy samples. RESULTS: In CAST-R-HP, automated acquisition and machine learning of single-cell Raman spectra (SCRS) enable distinguishing individual H. pylori cells directly from a biopsy sample, with 98.5 ± 0.27% accuracy in ID. Moreover, by adding a 48- to72-h D2O feeding and drug exposure step prior to SCRS acquisition, CAST-R-HP reports AST for levofloxacin and clarithromycin with 100% accuracy, based on metabolic inhibition level. Furthermore, CAST-R-HP supports rapid sorting, low-bias DNA amplification, and full genome sequencing of single H. pylori cells with the SCRS defined, targeted drug-susceptibility phenotype, via Raman-activated gravity-driven cell encapsulation and sequencing. The genome-wide mutation map (maximum 99.70% coverage), at precisely 1-cell resolution, not only elucidates the drug-susceptibility phenotypes but also unveils their underlying molecular mechanisms. CONCLUSION: The culture independency, shorter turnaround time, high resolution, and comprehensive information output suggest that CAST-R-HP is a powerful tool for diagnosing and treating H. pylori infections.


Asunto(s)
Antiinfecciosos , Infecciones por Helicobacter , Helicobacter pylori , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Biopsia , Farmacorresistencia Bacteriana/genética , Infecciones por Helicobacter/diagnóstico , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/genética , Humanos , Pruebas de Sensibilidad Microbiana
16.
Clin Chem ; 68(8): 1031-1041, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35704075

RESUMEN

BACKGROUND: Metagenomic next-generation sequencing (mNGS) has the potential to become a complementary, if not essential, test in some clinical settings. However, the clinical application of mNGS in a large population of children with various types of infectious diseases (IDs) has not been previously evaluated. METHODS: From April 2019 to April 2021, 640 samples were collected at a single pediatric hospital and classified as ID [479 (74.8%)], non-ID [NID; 156 (24.4%)], and unknown cases [5 (0.8%)], according to the final clinical diagnosis. We compared the diagnostic performance in pathogen detection between mNGS and standard reference tests. RESULTS: According to final clinical diagnosis, the sensitivity and specificity of mNGS were 75.0% (95% CI: 70.8%-79.2%) and 59.0% (95% CI: 51.3%-66.7%), respectively. For distinguishing ID from NID, the sensitivity of mNGS was approximately 45.0% higher than that of standard tests (75.0% vs 30.0%; P < 0.001). For fungal detection, mNGS showed positive results in 93.0% of cases, compared to 43.7% for standard tests (P < 0.001). Diagnostic information was increased in respiratory system samples through the addition of meta-transcriptomic sequencing. Further analysis also showed that the read counts in sequencing data were highly correlated with clinical diagnosis, regardless of whether infection was by single or multiple pathogens (Kendall's tau b = 0.484, P < 0.001). CONCLUSIONS: For pediatric patients in critical condition with suspected infection, mNGS tests can provide valuable diagnostic information to resolve negative or inconclusive routine test results, differentiate ID from NID cases, and facilitate accurate and effective clinical therapeutic decision-making.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Niño , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Metagenómica/métodos , Estudios Retrospectivos , Sensibilidad y Especificidad
17.
BMC Infect Dis ; 22(1): 433, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35509001

RESUMEN

BACKGROUND: Etiological diagnosis is a key step in the treatment of patients with rare pulmonary mycosis, and the lack of understanding of this disease and lack of specific markers for the detection of rare species, such as Exophiala dermatitidis, add to the difficulty in diagnosing the condition. Therefore, improving the diagnostic strategies for this disease is very important. CASE PRESENTATION: A 52-year-old man presented with cough, sputum production and hemoptysis; chest computed tomography (CT) revealed multiple bilateral lesions. The pathogen was unable to be identified after three biopsies. Subsequently, we performed combined tissue metagenomic next-generation sequencing (mNGS). The results of mNGS and a good therapeutic response helped to identify the causative pathogen as Exophiala dermatitidis. Finally, the patient was diagnosed with Exophiala dermatitidis pneumonia. CONCLUSIONS: Combining molecular techniques, such as mNGS, with clinical microbiological tests will improve the rate of positivity in the diagnosis of rare fungal infections, and the importance of follow-up should be emphasized.


Asunto(s)
Exophiala , Micosis , Neumonía , Biopsia , Exophiala/genética , Humanos , Masculino , Persona de Mediana Edad
18.
Environ Sci Technol ; 56(24): 17936-17945, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36482675

RESUMEN

Amine-based scrubbing technique is recognized as a promising method of capturing CO2 to alleviate climate change. However, the less stability and poor acidity of solid acid catalysts (SACs) limit their potential to further improve amine regeneration activity and reduce the energy penalty. To address these challenges, here, we introduce two-dimensional (2D) cobalt-nitrogen-doped carbon nanoflakes (Co-N-C NSs) driven by a layered metal-organic framework that work as SACs. The designed 2D Co-N-C SACs can exhibit promising stability, superhydrophilic surface, and acidity. Such 2D structure also contains well-confined Co-N4 Lewis acid sites and -OH Brønsted acid sites to have a synergetic effect on C-N bond disruption and significantly increase CO2 desorption rate by 281% and reduce the reaction temperatures to 88 °C, minimizing water evaporation by 20.3% and subsequent regeneration energy penalty by 71.7% compared to the noncatalysis.


Asunto(s)
Dióxido de Carbono , Ácidos de Lewis , Aminas , Carbono , Cambio Climático
19.
Int J Med Sci ; 19(9): 1482-1501, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035369

RESUMEN

Background: To uncover advanced prognosis biomarkers in patient with kidney renal clear cell carcinoma (KIRC), our study was the first to make a comprehensive analysis of hsa-mir-21 predicted target genes and explore the immune characteristics in KIRC. Methods: In this study, the comprehensive analysis of hsa-mir-21 predicted target genes and immune characteristics in KIRC were analyzed via TIMER2.0, UALCAN, Metascape, Kaplan-Meier plotter, Human Protein Atlas, CancerSEA, JASPAR, GEPIA, R package: GSVA package (version 1.34.0) & immune infiltration algorithm (ssGSEA) and R package: RMS package (version 6.2-0) & SURVIVAL package (version 3.2-10). Results: Up-transcriptional expressions of RP2, NFIA, SPRY1 were significantly associated with favorable prognosis in KIRC, whereas that of TGFBI was markedly significantly to unfavorable prognosis. Additionally, RP2, NFIA, SPRY1 and TGFBI were significantly relevant to the immune infiltration in KIRC. Finally, ZNF263 was a common predicted transcription factor of RP2, NFIA, SPRY1 and TGFBI, which can as an independent indicator for prognosis in KIRC patients. Conclusions: Hsa-mir-21 predicted target genes (RP2, NFIA, SPRY1 and TGFBI) and the common transcription factor ZNF263 could be the advanced prognosis biomarkers in KIRC patients.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Biomarcadores de Tumor , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/inmunología , Humanos , Riñón , Neoplasias Renales/genética , Neoplasias Renales/inmunología , MicroARNs/genética , Pronóstico , Factores de Transcripción
20.
Genomics ; 113(1 Pt 2): 874-883, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33096256

RESUMEN

Pediatric sepsis is a major cause of mortality of children worldwide. However, there is still a lack of easy-to-use predictive tools that can accurately diagnose sepsis in children. This study aimed to develop an optimal gene model for the diagnosis of pediatric sepsis using statistics and machine learning approaches. Combining gene expression profiles from a training cohort of 364 pediatric samples with a Least Absolute Shrinkage and Selection Operator analysis produced eighteen genes as diagnostic markers. With the implementation of a Gradient Boosting algorithm, a model designated PEDSEPS-GBM, that aggregated these markers was developed with optimal performance for the diagnosis of pediatric samples in the validation and two independent cohorts. Moreover, a web calculator with a user-friendly interface was established for PEDSEPS-GBM. This study presents a diagnostic model that holds great potential for the detection of pediatric sepsis, and demonstrates the biologic and clinical relevance of this model.


Asunto(s)
Sepsis/genética , Transcriptoma , Biomarcadores/metabolismo , Niño , Biología Computacional/métodos , Humanos , Aprendizaje Automático , Pronóstico , Sepsis/metabolismo , Sepsis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA