Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cell Biochem ; 120(9): 15527-15537, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31062400

RESUMEN

HOXB13 exerts a close relation in several human cancers. This study explored the role of HOXB13 in glioblastoma (GBM), a brain tissue with the highest aggressive rate and mortality in adults. Through microarray and immunohistochemistry analyses, HOXB13 was highly expressed in GBM tissues. Furthermore, we showed that high-level expression of HOXB13 in GBM was associated with worse survival, suggesting that HOXB13 could be a prognostic marker for patients with GBM. GBM cells U87 and U251 overexpressing HOXB13 showed enhanced proliferation, migration, and invasion relative to the control cells, while knockdown of HOXB13 led to decreased cell proliferation, migration, and invasion abilities. In addition, dual-luciferase report assay, chromatin immunoprecipitation assay, and quantitative real-time polymerase chain reaction data showed that HOXB13 directly bound to HOXC-AS3 promoter. HOXC-AS3 was involved in HOXB13-induced proliferation, migration, and invasion of GBM cells. In summary, this study revealed the prognostic potential of HOXB13 in GBM. We believed that HOXB13/HOXC-AS3 signaling axis can be served as therapeutic targets for this highly aggressive cancer.


Asunto(s)
Proliferación Celular/genética , Glioblastoma/genética , Proteínas de Homeodominio/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Movimiento Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Masculino , Invasividad Neoplásica/genética , Pronóstico , Regiones Promotoras Genéticas/genética , Unión Proteica , Transducción de Señal/genética
2.
Extracell Vesicle ; 32024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872853

RESUMEN

Antibodies are critical tools for research into extracellular vesicles (EVs) and other extracellular nanoparticles (ENPs), where they can be used for their identification, characterization, and isolation. However, the lack of a centralized antibody platform where researchers can share validation results thus minimizing wasted personnel time and reagents, has been a significant obstacle. Moreover, because the performance of antibodies varies among assay types and conditions, detailed information on assay variables and protocols is also of value. To facilitate sharing of results on antibodies that are relevant to EV/ENP research, the EV Antibody Database has been developed by the investigators of the Extracellular RNA Communication Consortium (ERCC). Hosted by the ExRNA Portal (https://exrna.org/resources/evabdb/), this interactive database aggregates and shares results from antibodies that have been tested by research groups in the EV/ENP field. Currently, the EV Antibody Database includes modules for antibodies tested for western Blot, EV Flow Cytometry, and EV Sandwich Assays, and holds 110 records contributed by 6 laboratories from the ERCC. Detailed information on antibody sources, assay conditions, and results is provided, including negative results. We encourage ongoing expert input and community feedback to enhance the database's utility, making it a valuable resource for comprehensive validation data on antibodies and protocols in EV biology.

3.
Cancer Immunol Res ; 11(5): 629-645, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36881002

RESUMEN

The composition of the tumor immune microenvironment (TIME) is considered a key determinant of patients' response to immunotherapy. The mechanisms underlying TIME formation and development over time are poorly understood. Glioblastoma (GBM) is a lethal primary brain cancer for which there are no curative treatments. GBMs are immunologically heterogeneous and impervious to checkpoint blockade immunotherapies. Utilizing clinically relevant genetic mouse models of GBM, we identified distinct immune landscapes associated with expression of EGFR wild-type and mutant EGFRvIII cancer driver mutations. Over time, accumulation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) was more pronounced in EGFRvIII-driven GBMs and was correlated with resistance to PD-1 and CTLA-4 combination checkpoint blockade immunotherapy. We determined that GBM-secreted CXCL1/2/3 and PMN-MDSC-expressed CXCR2 formed an axis regulating output of PMN-MDSCs from the bone marrow leading to systemic increase in these cells in the spleen and GBM tumor-draining lymph nodes. Pharmacologic targeting of this axis induced a systemic decrease in the numbers of PMN-MDSC, facilitated responses to PD-1 and CTLA-4 combination checkpoint blocking immunotherapy, and prolonged survival in mice bearing EGFRvIII-driven GBM. Our results uncover a relationship between cancer driver mutations, TIME composition, and sensitivity to checkpoint blockade in GBM and support the stratification of patients with GBM for checkpoint blockade therapy based on integrated genotypic and immunologic profiles.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Células Supresoras de Origen Mieloide , Animales , Ratones , Glioblastoma/terapia , Glioblastoma/tratamiento farmacológico , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Receptor de Muerte Celular Programada 1 , Línea Celular Tumoral , Inmunoterapia , Mutación , Microambiente Tumoral/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia
4.
Matrix Biol Plus ; 13: 100100, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35106474

RESUMEN

Mammalian cells, including cancer cells, are covered by a surface layer containing cell bound proteoglycans, glycoproteins, associated glycosaminoglycans and bound proteins that is commonly referred to as the glycocalyx. Solid tumors also have a dynamic fluid microenvironment with elevated interstitial flow. In the present work we further investigate the hypothesis that interstitial flow is sensed by the tumor glycocalyx leading to activation of cell motility and metastasis. Using a highly metastatic renal carcinoma cell line (SN12L1) and its low metastatic counterpart (SN12C) we demonstrate in vitro that the small molecule Suberoylanilide Hydroxamic Acid (SAHA) inhibits the heparan sulfate synthesis enzyme N-deacetylase-N-sulfotransferase-1, reduces heparan sulfate in the glycocalyx and suppresses SN12L1 motility in response to interstitial flow. SN12L1 cells implanted in the kidney capsule of SCID mice formed large primary tumors and metastasized to distant organs, but when treated with SAHA metastases were not detected. In another set of experiments, the role of hyaluronic acid was investigated. Hyaluronan synthase 1, a critical enzyme in the synthetic pathway for hyaluronic acid, was knocked down in SN12L1 cells and in vitro experiments revealed inhibition of interstitial flow induced migration. Subsequently these cells were implanted in mouse kidneys and no distant metastases were detected. These findings suggest new therapeutic approaches to the treatment of kidney carcinoma metastasis.

5.
J BUON ; 26(5): 2074-2083, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34761619

RESUMEN

PURPOSE: Glioblastoma (GBM) remains one of the most fatal malignancy with limited available treatment. Serpin peptidase inhibitor, clade E nexin group 1 (SERPINE1) was found up-regulated in multiple cancers and play crucial roles in facilitating tumor progression and metastasis respectively. However, the role of SERPINE1 in glioblastoma was poorly understood. METHODS: We tested the hypothesis that SERPINE1 mediated malignant behaviors in GBM via regulating hairy and enhancer of split-1 (HES1). RESULTS: First, SERPINE1 is confirmed to be up-regulated in GBM, while further functional analysis demonstrated that SERPINE1 promoted cell proliferation, migration and invasion in GBM by performing the CCK-8 assay, colony formation assay, wound healing assay and transwell assay. Finally, it was proved that SERPINE1 achieved its pro-tumor functions in GBM via regulating the expression of HES1. CONCLUSIONS: Collectively, our results highlight the critical contribution of SERPINE1 in a series of malignant characteristics of GBM via regulating the expression of HES1, which shed new light on a new direction to develop a more effective therapeutic management of malignant tumors like GBM.


Asunto(s)
Proliferación Celular , Glioblastoma/patología , Inhibidor 1 de Activador Plasminogénico/fisiología , Factor de Transcripción HES-1/fisiología , Humanos , Células Tumorales Cultivadas , Regulación hacia Arriba
6.
Brain Behav ; 10(4): e01582, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32129004

RESUMEN

INTRODUCTION: Peripheral neurotization, recently as a promising approach, has taken effect in recovering motor function after damage to a peripheral nerve root. Neural anastomosis comprised of nerve conduit and neurorrhaphy participates in the nerve reconstruction. Current literature lacks evidence supporting an individualized coaptation for rescue of locomotor loss in rat subjects with paraplegia secondary to peripheral nerve injury (PNI). METHODS: This meta-analysis intends to qualify the specificity of gap-specific coaptation in treating a paralyzed limb following PNI. We used a highly sensitive search strategy to identify all published studies in multiple databases up to 1 May 2019. All identified trials were systematically evaluated using specific inclusion and exclusion criteria. Cochrane methodology was also applied to the results of this study. RESULTS: Twelve studies, including 349 rat subjects, met eligibility criteria. For a medium nerve defect (0.5-3.0 cm), nerve conduit was more likely than neurorrhaphy to precipitate axon regeneration and improve motor outcome of the hemiplegic limb (OR = 3.61, 95% CI = 1.80, 7.26, p < .0003) at 3-month follow-up, whereas neurorrhaphy might take its place in promoting limb motor function in a small nerve gap (<0.5 cm) (OR = 0.48, 95% CI = 0.22, 1.07, p < .007). For a small nerve defect, nerve conduit still demonstrated visible effectiveness in recovery of limb motion albeit poorer than neurorrhaphy (OR = 1.50, 95% CI = 0.92, 2.47, p < .05). CONCLUSION: Selective neurotization facilitates motor regeneration after nerve transection, and advisable choice of neural coaptation can maximize functional outcome on an individual basis.


Asunto(s)
Regeneración Nerviosa/fisiología , Transferencia de Nervios/métodos , Traumatismos de los Nervios Periféricos/cirugía , Recuperación de la Función/fisiología , Animales , Axones/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología , Ratas
7.
Neural Regen Res ; 15(4): 748-758, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31638100

RESUMEN

OBJECTIVE: To judge the efficacies of neural stem cell (NSC) transplantation on functional recovery following contusion spinal cord injuries (SCIs). DATA SOURCES: Studies in which NSCs were transplanted into a clinically relevant, standardized rat model of contusion SCI were identified by searching the PubMed, Embase and Cochrane databases, and the extracted data were analyzed by Stata 14.0. DATA SELECTION: Inclusion criteria were that NSCs were used in in vivo animal studies to treat contusion SCIs and that behavioral assessment of locomotor functional recovery was performed using the Basso, Beattie, and Bresnahan lo-comotor rating scale. Exclusion criteria included a follow-up of less than 4 weeks and the lack of control groups. OUTCOME MEASURES: The restoration of motor function was assessed by the Basso, Beattie, and Bresnahan locomotor rating scale. RESULTS: We identified 1756 non-duplicated papers by searching the aforementioned electronic databases, and 30 full-text articles met the inclusion criteria. A total of 37 studies reported in the 30 articles were included in the meta-analysis. The meta-analysis results showed that transplanted NSCs could improve the motor function recovery of rats following contusion SCIs, to a moderate extent (pooled standardized mean difference (SMD) = 0.73; 95% confidence interval (CI): 0.47-1.00; P < 0.001). NSCs obtained from different donor species (rat: SMD = 0.74; 95% CI: 0.36-1.13; human: SMD = 0.78; 95% CI: 0.31-1.25), at different donor ages (fetal: SMD = 0.67; 95% CI: 0.43-0.92; adult: SMD = 0.86; 95% CI: 0.50-1.22) and from different origins (brain-derived: SMD = 0.59; 95% CI: 0.27-0.91; spinal cord-derived: SMD = 0.51; 95% CI: 0.22-0.79) had similar efficacies on improved functional recovery; however, adult induced pluripotent stem cell-derived NSCs showed no significant efficacies. Furthermore, the use of higher doses of transplanted NSCs or the administration of immunosuppressive agents did not promote better locomotor function recovery (SMD = 0.45; 95% CI: 0.21-0.70). However, shorter periods between the contusion induction and the NSC transplantation showed slightly higher efficacies (acute: SMD = 1.22; 95% CI: 0.81-1.63; subacute: SMD = 0.75; 95% CI: 0.42-1.09). For chronic injuries, NSC implantation did not significantly improve functional recovery (SMD = 0.25; 95% CI: -0.16 to 0.65). CONCLUSION: NSC transplantation alone appears to be a positive yet limited method for the treatment of contusion SCIs.

8.
Am J Cancer Res ; 9(2): 250-269, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906627

RESUMEN

The aggressiveness and recurrence of glioma are major obstacles for the treatment of this type of tumor. Further understanding of the molecular mechanisms of glioma is necessary to improve the efficacy of therapy. MicroRNAs have been widely studied in many human cancers. Here, we found that miR-940 was one of the primary downregulated miRNAs in clinical samples and glioma cell lines through bioinformatics analysis and qRT-PCR. Upregulating miR-940 expression significantly inhibited the proliferation and invasion and promoted apoptosis of U87 and U118 cells. In addition, experiments in vivo showed that upregulation of miR-940 expression inhibited xenograft growth. Methylenetetrahydrofolate dehydrogenase (MTHFD2), a dual-functional metabolic enzyme, is involved in the one-carbon metabolism of folate in mitochondria. We found MTHFD2 to be overexpressed in glioma tissues and our clinical samples by qRT-PCR and Western blot assays. Through TargetScan prediction and luciferase assays, we found that miR-940 directly targets MTHFD2. Upregulation of miR-940 expression inhibited the expression of MTHFD2 and led to intracellular one-carbon metabolism dysfunction. Furthermore, the antitumor effects of miR-940 could be attenuated by overexpression of MTHFD2. Together, the results of our study suggest that miR-940 may be a new therapeutic target for the treatment of glioma through targeting of MTHFD2.

9.
Am J Transl Res ; 11(3): 1605-1615, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30972186

RESUMEN

In recent years, a large amount of research has reported that microRNA (miRNA) dysregulation is closely related to glioma progression. miR-524, a member of the miRNA family, has been confirmed to be involved in many human diseases, including glioma. However, the role and molecular mechanism of miR-524 in glioma have not been clarified. In our study, we showed that miR-524 expression was significantly decreased in glioma and was associated with glioma recurrence. Next, we performed a series of assays and confirmed that the upregulation of miR-524 suppressed glucose uptake, proliferation, migration and invasion in glioma cell lines. Then, through bioinformatics software and a dual luciferase assay, we demonstrated that NCF2 was a target gene of miR-524. In addition, we found that NCF2 reintroduction restored the inhibitor effect of miR-524 on glioma progression. These results elucidate the mechanism of miR-524 in glioma development and provide a potential therapeutic strategy for glioma patients.

10.
Int J Biol Sci ; 15(3): 533-543, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30745840

RESUMEN

Glioma is one of the most common brain tumors, suggesting the importance of investigating the molecular mechanism of gliomas. We studied the roles of Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) in glioma. Expressions of RRM2 are higher in glioma tissues evidenced by TCGA data, western blot and immunohistochemistry. RRM2 is negatively correlated with glioma patient's survival. RNA-seq showed that genes involved in apoptosis, proliferation, cell adhesion and negative regulation of signaling were up-regulated upon RNAi-mediated knock-down of RRM2. Cell phenotypes specific for stably knocking down RRM2 were determined using stable transfection in vitro. In an in vivo model, knock-down of RRM2 inhibited tumor growth and caused suppression of AKT and ERK1/2 signalings. Interfering RRM2 also down-regulated the expression of cyclin A, cyclin B1, cyclin D1, Vimentin, and N-cadherin, and elevated E-cadherin expression. Moreover, overexpression of RRM2 failed to increase the expression of cyclin B1, cyclin D1, and N-cadherin when phosphorylation of AKT and ERK1/2 was suppressed by LY294002 or PD98059. These findings indicated that RRM2 is a positive regulator of glioma progression which contributes to the migration and proliferation of glioma cells through ERK1/2 and AKT signalings and might be a novel prognostic indicator for glioma patients.


Asunto(s)
Glioma/metabolismo , Ribonucleósido Difosfato Reductasa/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Cromonas/farmacología , Flavonoides/farmacología , Citometría de Flujo , Humanos , Inmunohistoquímica , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Desnudos , Morfolinas/farmacología , Ribonucleósido Difosfato Reductasa/genética , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/fisiología
11.
Biomed Pharmacother ; 100: 205-212, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29428669

RESUMEN

Glioma has been considered as one of the most aggressive and popular brain tumors of patients. It is essential to explore the mechanism of glioma. In this study, we established PSMB8 as a therapeutic target for glioma treatment. Expression of PSMB8 as well as Ki-67 was higher in glioma tissues demonstrated by western blot and immunohistochemistry. Then, the role of PSMB8 in migration and proliferation of glioma cells was investigated by conducting wound-healing, trans-well assay, cell counting kit (CCK)-8, flow cytometry assay and colony formation analysis. The data showed that interfering PSMB8 may inhibit the migration and proliferation of glioma cells by reducing expression of cyclin A, cyclin B1, cyclin D1, Vimentin, and N-cadherin, and by increasing expression of E-cadherin. Additionally, interfering PSMB8 may induce apoptosis of glioma cells by upregulating caspase-3 expression. Furthermore, these in vitro findings were validated in vivo and the ERK1/2 and PI3k/AKT signaling pathways were involved in PSMB8-triggered migration and proliferation of glioma cells. In an in vivo model, downregulation of PSMB8 suppressed tumor growth. In conclusion, PSMB8 is closely associated with migration, proliferation, and apoptosis of glioma cells, and might be considered as a novel prognostic indicator in patients with gliomas.


Asunto(s)
Apoptosis , Neoplasias Encefálicas/metabolismo , Movimiento Celular , Proliferación Celular , Glioma/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Transducción de Señal , Animales , Apoptosis/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Glioma/patología , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA