Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(9): e202318063, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38190839

RESUMEN

The aqueous zinc-ion battery is promising as grid scale energy storage device, but hindered by the instable electrode/electrolyte interface. Herein, we report the lean-water ionic liquid electrolyte for aqueous zinc metal batteries. The lean-water ionic liquid electrolyte creates the hydrophobic tri-layer interface assembled by first two layers of hydrophobic OTF- and EMIM+ and third layer of loosely attached water, beyond the classical Gouy-Chapman-Stern theory based electrochemical double layer. By taking advantage of the hydrophobic tri-layer interface, the lean-water ionic liquid electrolyte enables a wide electrochemical working window (2.93 V) with relatively high zinc ion conductivity (17.3 mS/cm). Furthermore, the anion crowding interface facilitates the OTF- decomposition chemistry to create the mechanically graded solid electrolyte interface layer to simultaneously suppress the dendrite formation and maintain the mechanical stability. In this way, the lean-water based ionic liquid electrolyte realizes the ultralong cyclability of over 10000 cycles at 20 A/g and at practical condition of N/P ratio of 1.5, the cumulated areal capacity reach 1.8 Ah/cm2 , which outperforms the state-of-the-art zinc metal battery performance. Our work highlights the importance of the stable electrode/electrolyte interface stability, which would be practical for building high energy grid scale zinc-ion battery.

2.
J Am Chem Soc ; 145(41): 22456-22465, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37802095

RESUMEN

Zinc metal batteries are strongly hindered by water corrosion, as solvated zinc ions would bring the active water molecules to the electrode/electrolyte interface constantly. Herein, we report a sacrificial solvation shell to repel active water molecules from the electrode/electrolyte interface and assist in forming a fluoride-rich, organic-inorganic gradient solid electrolyte interface (SEI) layer. The simultaneous sacrificial process of methanol and Zn(CF3SO3)2 results in the gradient SEI layer with an organic-rich surface (CH2OC- and C5 product) and an inorganic-rich (ZnF2) bottom, which combines the merits of fast ion diffusion and high flexibility. As a result, the methanol additive enables corrosion-free zinc stripping/plating on copper foils for 300 cycles with an average coulombic efficiency of 99.5%, a record high cumulative plating capacity of 10 A h/cm2 at 40 mA/cm2 in Zn/Zn symmetrical batteries. More importantly, at an ultralow N/P ratio of 2, the practical VO2//20 µm thick Zn plate full batteries with a high areal capacity of 4.7 mAh/cm2 stably operate for over 250 cycles, establishing their promising application for grid-scale energy storage devices. Furthermore, directly utilizing the 20 µm thick Zn for the commercial-level areal capacity (4.7 mAh/cm2) full zinc battery in our work would simplify the manufacturing process and boost the development of the commercial zinc battery for stationary storage.

3.
J Am Chem Soc ; 144(38): 17407-17415, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36121645

RESUMEN

The proton, as the cationic form of the lightest element-H, is regarded as most ideal charge carrier in "rocking chair" batteries. However, current research on proton batteries is still at its infancy, and they usually deliver low capacity and suffer from severe acidic corrosion. Herein, electrochemically activated metallic H1.75MoO3 nanobelts are developed as a stable electrode for proton storage. The electrochemically pre-intercalated protons not only bond directly with the terminal O3 site via strong O-H bonds but also interact with the oxygens within the adjacent layers through hydrogen bonding, forming a hydrogen-bonding network in H1.75MoO3 nanobelts and enabling a diffusion-free Grotthuss mechanism as a result of its ultralow activation energy of ∼0.02 eV. To the best of our knowledge, this is the first reported inorganic electrode exhibiting Grotthuss mechanism-based proton storage. Additionally, the proton intercalation into MoO3 with formation of H1.75MoO3 induces strong Jahn-Teller electron-phonon coupling, rendering a metallic state. As a consequence, the H1.75MoO3 shows an outstanding fast charging performance and maintains a capacity of 111 mAh/g at 2500 C, largely outperforming the state-of-art battery electrodes. More importantly, a symmetric proton ion full cell based on H1.75MoO3 was assembled and delivered an energy density of 14.7 Wh/kg at an ultrahigh power density of 12.7 kW/kg, which outperforms those of fast charging supercapacitors and lead-acid batteries.

4.
World J Surg Oncol ; 20(1): 255, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945562

RESUMEN

BACKGROUND: Whether cytoreductive prostatectomy (CRP) should be performed in patients with oligometastatic prostate cancer (OPC) remains controversial. The goal of this systematic meta-analysis was to assess the efficacy of CRP as a treatment for OPC. METHODS: This systematic review and meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. Data sources included publications in the PubMed, Embase, the Cochrane Library, EBSCO, and Web of Science (SCI) databases as of May 2022. Eligible articles included prospective studies comparing the efficacy of CRP to a lack of CRP in patients with OPC. RESULTS: In total, 10 publications incorporating 888 patients were analyzed. Tumor-reducing prostatectomy was found to have no significant effect on long-term or short-term OS [OR = 2.26, 95% CI (0.97, 5.28), P = 0.06] and [OR = 1.73, 95% CI (0.83, 3.58), P = 0.14], but it significantly improved patient long-term or short-term CSS [OR = 1.77, 95% CI (1.01, 310), P = 0.04] and [OR = 2.71, 95% CI (1.72, 4.29), P < 0.0001] and PFS [OR = 1.93, 95% CI (1.25, 2.97), P = 0.003]. CONCLUSION: These results suggest that cytoreductive prostatectomy can confer survival benefits to OPC patients. TRIAL REGISTRATION: INPLASY protocol 202260017 https://doi.org/10.37766/inplasy2022.6.0017 .


Asunto(s)
Procedimientos Quirúrgicos de Citorreducción , Neoplasias de la Próstata , Humanos , Masculino , Estudios Prospectivos , Prostatectomía/métodos , Neoplasias de la Próstata/patología
5.
Small ; 13(20)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28371218

RESUMEN

SnO2 suffers from fast capacity fading in lithium-ion batteries due to large volume expansion as well as unstable solid electrolyte interphase. Herein, the design and synthesis of phosphorus bridging SnO2 and graphene through covalent bonding are demonstrated to achieve a robust structure. In this unique structure, the phosphorus is able to covalently "bridge" graphene and tin oxide nanocrystal through PC and SnOP bonding, respectively, and act as a buffer layer to keep the structure stable during charging-discharging. As a result, when applied as a lithium battery anode, SnO2 @P@GO shows very stable performance and retains 95% of 2nd capacity onward after 700 cycles. Such unique structural design opens up new avenues for the rational design of other high-capacity materials for lithium battery, and as a proof-of-concept, creates new opportunities in the synthesis of advanced functional materials for high-performance energy storage devices.

6.
Small ; 12(5): 588-94, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26680110

RESUMEN

Tin-based electrode s offer high theoretical capacities in lithium ion batteries, but further commercialization is strongly hindered by the poor cycling stability. An in situ reduction method is developed to synthesize SnO2 quantum dots@graphene oxide. This approach is achieved by the oxidation of Sn(2+) and the reduction of the graphene oxide. At 2 A g(-1), a capacity retention of 86% is obtained even after 2000 cycles.

7.
Nano Lett ; 15(1): 738-44, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25490409

RESUMEN

Transition metal oxides have attracted much interest for their high energy density in lithium batteries. However, the fast capacity fading and the low power density still limit their practical implementation. In order to overcome these challenges, one-dimensional yolk-shell nanorods have been successfully constructed using manganese oxide as an example through a facile two-step sol-gel coating method. Dopamine and tetraethoxysilane are used as precursors to obtain uniform polymer coating and silica layer followed by converting into carbon shell and hollow space, respectively. As anode material for lithium batteries, the manganese oxide/carbon yolk-shell nanorod electrode has a reversible capacity of 660 mAh/g for initial cycle at 100 mA/g and exhibits excellent cyclability with a capacity of 634 mAh/g after 900 cycles at a current density of 500 mA/g. An enhanced capacity is observed during the long-term cycling process, which may be attributed to the structural integrity, the stability of solid electrolyte interphase layer, and the electrochemical actuation of the yolk-shell nanorod structure. The results demonstrate that the manganese oxide is well utilized with the one-dimensional yolk-shell structure, which represents an efficient way to realize excellent performance for practical applications.

8.
Nano Lett ; 15(3): 2037-44, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25710223

RESUMEN

Development of pseudocapacitor electrode materials with high comprehensive electrochemical performance, such as high capacitance, superior reversibility, excellent stability, and good rate capability at the high mass loading level, still is a tremendous challenge. To our knowledge, few works could successfully achieve the above comprehensive electrochemical performance simultaneously. Here we design and synthesize one interwoven three-dimensional (3D) architecture of cobalt oxide nanobrush-graphene@Ni(x)Co(2x)(OH)(6x) (CNG@NCH) electrode with high comprehensive electrochemical performance: high specific capacitance (2550 F g(-1) and 5.1 F cm(-2)), good rate capability (82.98% capacitance retention at 20 A g(-1) vs 1 A g(-1)), superior reversibility, and cycling stability (92.70% capacitance retention after 5000 cycles at 20 A g(-1)), which successfully overcomes the tremendous challenge for pseudocapacitor electrode materials. The asymmetric supercapacitor of CNG@NCH//reduced-graphene-oxide-film exhibits good rate capability (74.85% capacitance retention at 10 A g(-1) vs 0.5 A g(-1)) and high energy density (78.75 Wh kg(-1) at a power density of 473 W kg(-1)). The design of this interwoven 3D frame architecture can offer a new and appropriate idea for obtaining high comprehensive performance electrode materials in the energy storage field.

9.
Phys Chem Chem Phys ; 17(12): 7619-23, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25712166

RESUMEN

Conversion/alloying reactions, in which more lithium ions are involved, are severely handicapped by the dramatic volume changes. A facile and versatile strategy has been developed for integrating the SnO2 nanorod array in the PPy nanofilm for providing a flexible confinement for anchoring each nanorod and maintaining the entire structural integrity and providing sustainable contact; therefore, exhibiting much more stable cycling stability (701 mA h g(-1) after 300 cycles) and better high-rate capability (512 mA h g(-1) at 3 A g(-1)) when compared with the core-shell SnO2-PPy NA.

10.
Adv Mater ; 36(15): e2307151, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190759

RESUMEN

Advanced battery electrodes require a cautious design of microscale particles with built-in nanoscale features to exploit the advantages of both micro- and nano-particles relative to their performance attributes. Herein, the dynamic behavior of nanosized Sn clusters and their host pores in carbon nanofiber) during sodiation and desodiation is revealed using a state-of-the-art 3D electron microscopic reconstruction technique. For the first time, the anomalous expansion of Sn clusters after desodiation is observed owing to the aggregation of clusters/single atoms. Pore connectivity is retained despite the anomalous expansion, suggesting inhibition of solid electrolyte interface formation in the sub-2-nm pores. Taking advantage of the built-in nanoconfinement feature, the CNF film with nanometer-sized interconnected pores hosting Sn clusters (≈2 nm) enables high utilization (95% at a high rate of 1 A g-1) of Sn active sites while maintaining an improved initial Coulombic efficiency of 87%. The findings provide insights into electrochemical reactions in a confined space and a guiding principle in electrode design for battery applications.

11.
ACS Sustain Chem Eng ; 11(8): 3208-3218, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36874192

RESUMEN

Exfoliated MXene nanosheets are integrated with cellulose nanofibers (CNFs) to form composite aerogels with high electric conductivity. The combination of CNFs and MXene nanosheets forms a unique "accordion-like" hierarchical architecture with MXene-CNF pillared layers through ice-crystal templating. Benefiting from the special "layer-strut" structure, the MXene/CNF composite aerogels have low density (50 mg/cm3), excellent compressibility and recoverability, as well as superior fatigue resistance (up to 1000 cycles). When being used as a piezoresistive sensor, the composite aerogel exhibits high sensitivity upon different strains, stable sensing performance with various compressive frequencies, broad detection range, and quick responsiveness (0.48 s). Moreover, the piezoresistive sensors are shown to have an excellent real-time sensing ability for human motions such as swallowing, arm bending, walking, and running. The composite aerogels also have a low environmental impact with the natural biodegradability of CNFs. The designed composite aerogels can serve as a promising sensing material for developing next-generation sustainable and wearable electronic devices.

12.
Cancers (Basel) ; 14(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35954408

RESUMEN

Despite aggressive treatment and androgen-deprivation therapy, most prostate cancer patients ultimately develop castration-resistant prostate cancer (CRPC), which is associated with high mortality rates. However, the mechanisms governing the development of CRPC are poorly understood, and androgen receptor (AR) signaling has been shown to be important in CRPC through AR gene mutations, gene overexpression, co-regulatory factors, AR shear variants, and androgen resynthesis. A growing number of non-AR pathways have also been shown to influence the CRPC progression, including the Wnt and Hh pathways. Moreover, non-coding RNAs have been identified as important regulators of the CRPC pathogenesis. The present review provides an overview of the relevant literature pertaining to the mechanisms governing the molecular acquisition of castration resistance in prostate cancer, providing a foundation for future, targeted therapeutic efforts.

13.
Carbohydr Polym ; 291: 119573, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35698338

RESUMEN

Lignin-containing cellulose nanofibers (LCNFs), prepared from energy cane bagasse (ECB) using microwave-assisted natural deep eutectic solvent (MW-NADES) pretreatment combined with microfluidization, are utilized as stabilizing agents for magnetic particles (MNPs) in magnetorheological fluids (MRFs). The as-prepared LCNFs helped suspend negatively charged MNPs in MRFs effectively due to the presence of physically entangled network of LCNFs and the electrostatic repulsion between LCNFs and MNPs. Consequently, the presence of LCNFs increased the viscosity, yield stress and dynamic moduli of MRFs within the entire magnetic field range (0-1 T). Moreover, the as-developed LCNF-MRFs exhibited superior magnetorheological properties, i.e., widely controllable viscosity, yield stress and dynamic moduli, rapid magnetic response, good reversibility and outstanding cycling stability. This work demonstrates the sustainable, ultrafast production of LCNFs from cellulosic biomass using MW-NADES for MRF stabilization, paving the way for the development of high-performance, and eco-friendly MRFs.


Asunto(s)
Lignina , Nanofibras , Celulosa , Microondas , Solventes
14.
Materials (Basel) ; 15(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35629697

RESUMEN

The development of LiFePO4 (LFP) in high-power energy storage devices is hampered by its slow Li-ion diffusion kinetics. Constructing the composite electrode materials with vanadium substitution is a scientific endeavor to boost LFP's power capacity. Herein, a series of xLiFePO4·yLi3V2(PO4)3 (xLFP·yLVP) composites were fabricated using a simple spray-drying approach. We propose that 5LFP·LVP is the optimal choice for Li-ion battery promotion, owning to its excellent Li-ion storage capacity (material energy density of 413.6 W·h·kg-1), strong machining capability (compacted density of 1.82 g·cm-3) and lower raw material cost consumption. Furthermore, the 5LFP·LVP||LTO Li-ion pouch cell also presents prominent energy storage capability. After 300 cycles of a constant current test at 400 mA, 75% of the initial capacity (379.1 mA·h) is achieved, with around 100% of Coulombic efficiency. A capacity retention of 60.3% is displayed for the 300th cycle when discharging at 1200 mA, with the capacity fading by 0.15% per cycle. This prototype provides a valid and scientific attempt to accelerate the development of xLFP·yLVP composites in application-oriented Li-ion batteries.

15.
Adv Sci (Weinh) ; 9(25): e2202380, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35798275

RESUMEN

Uncontrollable zinc dendrite growth and parasitic reactions have greatly hindered the development of high energy and long life rechargeable aqueous zinc-ion batteries. Herein, the synergic effect of a bifunctional lignin-containing cellulose nanofiber (LCNF)-MXene (LM) layer to stabilize the interface of zinc anode is reported. On one hand, the LCNF provides enough strength (43.7 MPa) at relative low porosity (52.2%) to enable the diffusion limited dendrite suppression, while, on the other hand, the MXene serves as a zinc gating layer, facilitating the zinc ion mobility, restricting the active water/anions from degradation in the electrode/electrolyte interface, and epitaxially guiding zinc deposition along (002) plane. Benefiting from the synergic effect of diffusion limited dendrite suppression and zinc gate, the LM layer enabled a high coulombic efficiency (CE) of 98.9% with a low overpotential of 43.1 mV at 1 mA cm-2 in Zn//Cu asymmetric cells. More importantly, Zn//MnO2 full cells with the LM layer achieve a high-capacity retention of 90.0% for over 1000 cycles at 1 A g-1 , much higher than the full cell without the protective layer (73.9% over 500 cycles). The work provides a new insight in designing a dendrite-free zinc anode for long-cycle-life batteries.


Asunto(s)
Lignina , Nanofibras , Celulosa , Compuestos de Manganeso , Óxidos , Zinc
16.
Materials (Basel) ; 13(2)2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31963411

RESUMEN

SnS2 as a high energy anode material has attracted extensive research interest recently. However, the fast capacity decay and low rate performance in alkaline-ion batteries associated with repeated volume variation and low electrical conductivity plague them from practical application. Herein, we propose a facile method to solve this problem by synthesizing porous SnS2 microflowers with in-situ formed sulfur vacancies. The flexible porous nanosheets in the three-dimensional flower-like nanostructure provide facile strain relaxation to avoid stress concentration during the volume changes. Rich sulfur vacancies and porous structure enable the fast and efficient electron transport. The porous SnS2-x microflowers exhibit outstanding performance for lithium ion battery in terms of high capacity (1375 mAh g-1 at 100 mA g-1) and outstanding rate capability (827 mA h g-1 at high rate of 2 A g-1). For sodium ion battery, a high capacity (~522 mAh g-1) can be achieved at 5 A g-1 after 200 cycles for SnS2-x microflowers. The rational design in nanostructures, as well as the chemical compositions, might create new opportunities in designing the new architecture for highly efficient energy storage devices.

17.
Biosens Bioelectron ; 167: 112491, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32798808

RESUMEN

High cost platinum (Pt) catalysts limit the application of microbial electrolysis cells (MECs) for hydrogen (H2) production. Here, inexpensive and efficient Mo2N nanobelt cathodes were prepared using an ethanol method with minimized catalyst and binder loadings. The chronopotentiometry tests demonstrated that the Mo2N nanobelt cathodes had similar catalytic activities for H2 evolution compared to that of Pt/C (10 wt%). The H2 production rates (0.39 vs. 0.37 m3-H2/m3/d), coulombic efficiencies (90% vs. 77%), and overall hydrogen recovery (74% vs. 70%) of MECs with the Mo2N nanobelt cathodes were also comparable to those with Pt/C cathodes. However, the cost of Mo2N nanobelt catalyst ($ 31/m2) was much less than that of Pt/C catalysts ($ 1930/m2). Furthermore, the biofilm microbiomes at electrodes were studied using the PacBio sequencing of full-length 16S rRNA gene. It indicated Stenotrophomonas nitritireducens as a putative electroactive bacterium dominating the anode biofilm microbiomes. The majority of dominant species in the Mo2N and Pt/C cathode communities belonged to Stenotrophomonas nitritireducens, Stenotrophomonas maltophilia, and Comamonas testosterone. The dominant populations in the cathode biofilms were shaped by the cathode materials. This study demonstrated Mo2N nanobelt catalyst as an alternative to Pt catalyst for H2 production in MECs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Microbiota , Biopelículas , Electrodos , Electrólisis , Hidrógeno , ARN Ribosómico 16S , Stenotrophomonas
18.
Nanomicro Lett ; 11(1): 90, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-34138036

RESUMEN

The increasing demands for environmentally friendly grid-scale electric energy storage devices with high energy density and low cost have stimulated the rapid development of various energy storage systems, due to the environmental pollution and energy crisis caused by traditional energy storage technologies. As one of the new and most promising alternative energy storage technologies, zinc-ion rechargeable batteries have recently received much attention owing to their high abundance of zinc in natural resources, intrinsic safety, and cost effectiveness, when compared with the popular, but unsafe and expensive lithium-ion batteries. In particular, the use of mild aqueous electrolytes in zinc-ion batteries (ZIBs) demonstrates high potential for portable electronic applications and large-scale energy storage systems. Moreover, the development of superior electrolyte operating at either high temperature or subzero condition is crucial for practical applications of ZIBs in harsh environments, such as aerospace, airplanes, or submarines. However, there are still many existing challenges that need to be resolved. This paper presents a timely review on recent progresses and challenges in various cathode materials and electrolytes (aqueous, organic, and solid-state electrolytes) in ZIBs. Design and synthesis of zinc-based anode materials and separators are also briefly discussed.

19.
ACS Appl Mater Interfaces ; 11(23): 20762-20769, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31157525

RESUMEN

A two-dimensional (2D) layer-structured material is often a high-capacity ionic storage material with fast ionic transport within the layers. This appears to be the case for nonconversion layer structure, such as graphite. However, this is not the case for conversion-type layered structure such as transition-metal sulfide, in which localized congestion of ionic species adjacent to the surface will induce localized conversion, leading to the blocking of the fast diffusion channels and fast capacity fading, which therefore constitutes one of the critical barriers for the application of transition-metal sulfide layered structure. In this work, we report the tackling of this critical barrier through nanoscale engineering. We discover that interconnected vertically stacked two-dimensional-molybdenum disulfide can dramatically enhance the cycling stability. Atomic-level in situ transmission electron microscopy observation reveals that the molybdenum disulfide (MoS2) nanocakes assembled with tangling {100}-terminated nanosheets offer abundant open channels for Li+ insertion through the {100} surface, featuring an exceptional cyclability performance for over 200 cycles with a capacity retention of 90%. In contrast, (002)-terminated MoS2 nanoflowers only retain 10% of original capacity after 50 cycles. The present work demonstrates a general principle and opens a new route of crystallographic design to enhance electrochemical performance for assembling 2D materials for energy storage.

20.
Mol Med Rep ; 18(4): 3997-4003, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30132575

RESUMEN

Hypoxia serves a critical role in the pathogenesis of liver fibrosis. Hypoxia­inducible factor 1α (HIF1­α) is induced when cells are exposed to low O2 concentrations. Recently, it has been suggested that Rho­associated coiled­coil­forming kinase 1 (ROCK1) may be an important HIF1­α regulator. In the present study, it was analyzed whether crosstalk between HIF1­α and ROCK1 regulates cell proliferation and collagen synthesis in hepatic stellate cells (HSCs) under hypoxic conditions. For this purpose, a rat hepatic HSC line (HSC­T6) was cultured under hypoxic or normoxic conditions, and HIF1­α and ROCK1 expression was measured at different time points. Additionally, HSC­T6 cells were transfected with HIF1­α small interfering RNA (siHIF1­α), and measured protein expression and mRNA transcript levels of α­smooth muscle actin, collagen 1A1 and ROCK1. Collagen 3A1 secretion was also measured by ELISA. Cell proliferation was assessed by the MTT assay under these hypoxic conditions. The results indicated that a specific ROCK inhibitor, Y­27632, increased HIF1­α and ROCK1 expression over time in HSC­T6 cells in response to hypoxia. In addition, knockdown of HIF1­α inhibited HSC­T6 proliferation, suppressed collagen 1A1 expression, decreased collagen 3A1 secretion and attenuated ROCK1 expression. Notably, ROCK1 inhibition caused HSC­T6 quiescence, suppressed collagen secretion and downregulated HIF1­α expression. Collectively, these findings indicated that the interplay between HIF1­α and ROCK1 may be a critical factor that regulates cell proliferation and collagen synthesis in rat HSCs under hypoxia.


Asunto(s)
Colágeno/biosíntesis , Células Estrelladas Hepáticas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Hipoxia de la Célula , Línea Celular , Proliferación Celular , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Ratas , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA