Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome Res ; 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948368

RESUMEN

Understanding the genetic mechanisms of phenotypic variation in hybrids between domestic animals and their wild relatives may aid germplasm innovation. Here, we report the high-quality genome assemblies of a male Pamir argali (O ammon polii, 2n = 56), a female Tibetan sheep (O aries, 2n = 54), and a male hybrid of Pamir argali and domestic sheep, and the high-throughput sequencing of 425 ovine animals, including the hybrids of argali and domestic sheep. We detected genomic synteny between Chromosome 2 of sheep and two acrocentric chromosomes of argali. We revealed consistent satellite repeats around the chromosome breakpoints, which could have resulted in chromosome fusion. We observed many more hybrids with karyotype 2n = 54 than with 2n = 55, which could be explained by the selfish centromeres, the possible decreased rate of normal/balanced sperm, and the increased incidence of early pregnancy loss in the aneuploid ewes or rams. We identified genes and variants associated with important morphological and production traits (e.g., body weight, cannon circumference, hip height, and tail length) that show significant variations. We revealed a strong selective signature at the mutation (c.334C > A, p.G112W) in TBXT and confirmed its association with tail length among sheep populations of wide geographic and genetic origins. We produced an intercross population of 110 F2 offspring with varied number of vertebrae and validated the causal mutation by whole-genome association analysis. We verified its function using CRISPR-Cas9 genome editing. Our results provide insights into chromosomal speciation and phenotypic evolution and a foundation of genetic variants for the breeding of sheep and other animals.

2.
Commun Biol ; 6(1): 159, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755107

RESUMEN

The fat tail of sheep is an important organ that has evolved to adapt to extreme environments. However, the genetic mechanisms underlying the fat tail phenotype remain poorly understood. Here, we characterize transcriptome and lipidome profiles and morphological changes in 250 adipose tissues from two thin-tailed and three fat-tailed sheep populations in summer and winter. We implement whole-genome selective sweep tests to identify genetic variants related to fat-tails. We identify a set of functional genes that show differential expression in the tail fat of fat-tailed and thin-tailed sheep in summer and winter. These genes are significantly enriched in pathways, such as lipid metabolism, extracellular matrix (ECM) remodeling, molecular transport, and inflammatory response. In contrast to thin-tailed sheep, tail fat from fat-tailed sheep show slighter changes in adipocyte size, ECM remodeling, and lipid metabolism, and had less inflammation in response to seasonal changes, indicating improved homeostasis. Whole-genome selective sweep tests identify genes involved in preadipocyte commitment (e.g., BMP2, PDGFD) and terminal adipogenic differentiation (e.g., VEGFA), which could contribute to enhanced adipocyte hyperplasia. Altogether, we establish a model of regulatory networks regulating adipose homeostasis in sheep tails. These findings improve our understanding of how adipose homeostasis is maintained, in response to extreme environments in animals.


Asunto(s)
Tejido Adiposo , Multiómica , Ovinos , Animales , Tejido Adiposo/metabolismo , Adipocitos , Transcriptoma , Ambientes Extremos
3.
Front Genet ; 12: 670582, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093663

RESUMEN

Copy number variations (CNVs) are a major source of structural variation in mammalian genomes. Here, we characterized the genome-wide CNV in 2059 sheep from 67 populations all over the world using the Ovine Infinium HD (600K) SNP BeadChip. We tested their associations with distinct phenotypic traits by conducting multiple independent genome-wide tests. In total, we detected 7547 unique CNVs and 18,152 CNV events in 1217 non-redundant CNV regions (CNVRs), covering 245 Mb (∼10%) of the whole sheep genome. We identified seven CNVRs with frequencies correlating to geographical origins and 107 CNVRs overlapping 53 known quantitative trait loci (QTLs). Gene ontology and pathway enrichment analyses of CNV-overlapping genes revealed their common involvement in energy metabolism, endocrine regulation, nervous system development, cell proliferation, immune, and reproduction. For the phenotypic traits, we detected significantly associated (adjusted P < 0.05) CNVRs harboring functional candidate genes, such as SBNO2 for polycerate; PPP1R11 and GABBR1 for tail weight; AKT1 for supernumerary nipple; CSRP1, WNT7B, HMX1, and FGFR3 for ear size; and NOS3 and FILIP1 in Wadi sheep; SNRPD3, KHDRBS2, and SDCCAG3 in Hu sheep; NOS3, BMP1, and SLC19A1 in Icelandic; CDK2 in Finnsheep; MICA in Romanov; and REEP4 in Texel sheep for litter size. These CNVs and associated genes are important markers for molecular breeding of sheep and other livestock species.

4.
Commun Biol ; 4(1): 1307, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795381

RESUMEN

The domestication and subsequent development of sheep are crucial events in the history of human civilization and the agricultural revolution. However, the impact of interspecific introgression on the genomic regions under domestication and subsequent selection remains unclear. Here, we analyze the whole genomes of domestic sheep and their wild relative species. We found introgression from wild sheep such as the snow sheep and its American relatives (bighorn and thinhorn sheep) into urial, Asiatic and European mouflons. We observed independent events of adaptive introgression from wild sheep into the Asiatic and European mouflons, as well as shared introgressed regions from both snow sheep and argali into Asiatic mouflon before or during the domestication process. We revealed European mouflons might arise through hybridization events between a now extinct sheep in Europe and feral domesticated sheep around 6000-5000 years BP. We also unveiled later introgressions from wild sheep to their sympatric domestic sheep after domestication. Several of the introgression events contain loci with candidate domestication genes (e.g., PAPPA2, NR6A1, SH3GL3, RFX3 and CAMK4), associated with morphological, immune, reproduction or production traits (wool/meat/milk). We also detected introgression events that introduced genes related to nervous response (NEURL1), neurogenesis (PRUNE2), hearing ability (USH2A), and placental viability (PAG11 and PAG3) into domestic sheep and their ancestral wild species from other wild species.


Asunto(s)
Domesticación , Flujo Génico , Filogenia , Selección Genética , Ovinos/genética , Animales , Borrego Cimarrón/genética , Oveja Doméstica/genética , Secuenciación Completa del Genoma
5.
Nat Commun ; 11(1): 2815, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499537

RESUMEN

Understanding the genetic changes underlying phenotypic variation in sheep (Ovis aries) may facilitate our efforts towards further improvement. Here, we report the deep resequencing of 248 sheep including the wild ancestor (O. orientalis), landraces, and improved breeds. We explored the sheep variome and selection signatures. We detected genomic regions harboring genes associated with distinct morphological and agronomic traits, which may be past and potential future targets of domestication, breeding, and selection. Furthermore, we found non-synonymous mutations in a set of plausible candidate genes and significant differences in their allele frequency distributions across breeds. We identified PDGFD as a likely causal gene for fat deposition in the tails of sheep through transcriptome, RT-PCR, qPCR, and Western blot analyses. Our results provide insights into the demographic history of sheep and a valuable genomic resource for future genetic studies and improved genome-assisted breeding of sheep and other domestic animals.


Asunto(s)
Crianza de Animales Domésticos/métodos , Animales Salvajes/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Oveja Doméstica/genética , Alelos , Animales , Cruzamiento , Femenino , Frecuencia de los Genes , Variación Genética , Genética , Genómica , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Desequilibrio de Ligamiento , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Selección Genética , Análisis de Secuencia de ADN , Ovinos , Especificidad de la Especie , Secuenciación Completa del Genoma
6.
J Poult Sci ; 56(1): 27-31, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-32055193

RESUMEN

Improving feed efficiency is important for decreasing feed cost in poultry production, because feed account for approximately 70% of the total production costs. The selection of feed efficiency may affect other important economic traits. Therefore, the objectives of this present study was to evaluate the relationships of the residual feed intake (RFI) with live body weight, carcass weight, carcass composition, and size of small intestines in a population of F2 Pekin ducks. Nine-hundred and eighty F2 ducks were derived from a cross between 40 Pekin ducks and 10 Mallard ducks. The results showed no significant correlation of RFI with live body weight and eviscerated carcass weight. RFI had negative effects on breast meat weight and gizzard weight. A positive correlation of RFI with abdominal fat weight, skin weight, and jejunum length was detected. Our results indicated that the selection of RFI could improve the feed efficiency of ducks without affecting their carcass compositions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA