Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Circ Res ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082135

RESUMEN

BACKGROUND: Prostaglandin I2 synthesized by endothelial COX (cyclooxygenase) evokes potent vasodilation in some blood vessels but is paradoxically responsible for endothelium-dependent constriction (EDC) in others. Prostaglandin I2 production and EDC may be enhanced in diseases such as hypertension. However, how PGIS (prostaglandin I2 synthase) deficiency affects EDC and how this is implicated in the consequent cardiovascular pathologies remain largely unknown. METHODS: Experiments were performed with wild-type, Pgis knockout (Pgis-/-) and Pgis/thromboxane-prostanoid receptor gene (Tp) double knockout (Pgis-/-Tp-/-) mice and Pgis-/- mice transplanted with unfractionated wild-type or Cox-1-/- bone marrow cells, as well as human umbilical arteries. COX-derived prostanoids were measured by high-performance liquid chromatography-mass spectrometry. Vasomotor responses of distinct types of arteries were assessed by isometric force measurement. Parameters of hypertension, vascular remodeling, and cardiac hypertrophy in mice at different ages were monitored. RESULTS: PGF2α, PGE2, and a trace amount of PGD2, but not thromboxane A2 (TxA2), were produced in response to acetylcholine in Pgis-/- or PGIS-inhibited arteries. PGIS deficiency resulted in exacerbation or occurrence of EDC ex vivo and in vivo. Endothelium-dependent hyperpolarization was unchanged, but phosphorylation levels of eNOS (endothelial nitric oxide synthase) at Ser1177 and Thr495 were altered and NO production and the NO-dependent relaxation evoked by acetylcholine were remarkably reduced in Pgis-/- aortas. Pgis-/- mice developed high blood pressure and vascular remodeling at 16 to 17 weeks and subsequently cardiac hypertrophy at 24 to 26 weeks. Meanwhile, blood pressure and cardiac parameters remained normal at 8 to 10 weeks. Additional ablation of TP (TxA2 receptor) not only restrained EDC and the downregulation of NO signaling in Pgis-/- mice but also ameliorated the cardiovascular abnormalities. Stimulation of Pgis-/- vessels with acetylcholine in the presence of platelets led to increased TxA2 generation. COX-1 disruption in bone marrow-derived cells failed to affect the development of high blood pressure and vascular remodeling in Pgis-/- mice though it largely suppressed the increase of plasma TxB2 (TxA2 metabolite) level. CONCLUSIONS: Our study demonstrates that the non-TxA2 prostanoids/TP axis plays an essential role in mediating the augmentation of EDC and cardiovascular disorders when PGIS is deficient, suggesting TP as a promising therapeutic target in diseases associated with PGIS insufficiency.

2.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782117

RESUMEN

CRISPR/Cas9 has emerged as a powerful technology for tissue-specific mutagenesis. However, tissue-specific CRISPR/Cas9 tools currently available in Drosophila remain deficient in three significant ways. First, many existing gRNAs are inefficient, such that further improvements of gRNA expression constructs are needed for more efficient and predictable mutagenesis in both somatic and germline tissues. Second, it has been difficult to label mutant cells in target tissues with current methods. Lastly, application of tissue-specific mutagenesis at present often relies on Gal4-driven Cas9, which hampers the flexibility and effectiveness of the system. Here, we tackle these deficiencies by building upon our previous CRISPR-mediated tissue-restricted mutagenesis (CRISPR-TRiM) tools. First, we significantly improved gRNA efficiency in somatic tissues by optimizing multiplexed gRNA design. Similarly, we also designed efficient dual-gRNA vectors for the germline. Second, we developed methods to positively and negatively label mutant cells in tissue-specific mutagenesis by incorporating co-CRISPR reporters into gRNA expression vectors. Lastly, we generated genetic reagents for convenient conversion of existing Gal4 drivers into tissue-specific Cas9 lines based on homology-assisted CRISPR knock-in. In this way, we expand the choices of Cas9 for CRISPR-TRiM analysis to broader tissues and developmental stages. Overall, our upgraded CRISPR/Cas9 tools make tissue-specific mutagenesis more versatile, reliable, and effective in Drosophila These improvements may be also applied to other model systems.


Asunto(s)
Sistemas CRISPR-Cas , Drosophila/genética , Técnicas Genéticas , Mutagénesis , Animales , Femenino , Masculino , ARN Guía de Kinetoplastida
3.
Kidney Int ; 103(1): 100-114, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36087809

RESUMEN

Necroinflammation plays an important role in disease settings such as acute kidney injury (AKI). We and others have elucidated that prostaglandins, which are critically involved in inflammation, may activate E-prostanoid 3 receptor (EP3) at low concentrations. However, how EP3 blockade interacts with regulated cell death and affects AKI remains unknown. In this study, AKI was induced by ischemia-reperfusion (30 minutes/24 hours) in Ep3 knockout (Ep3-/-), bone marrow chimeric, myeloid conditional EP3 knockout and corresponding control mice. The production of prostaglandins E2 and I2 was markedly increased after ischemia-reperfusion, and either abrogation or antagonism of EP3 ameliorated the injury. EP3 deficiency curbed inflammatory cytokine release, neutrophil infiltration and serum high-mobility group box 1 levels, but additional TLR4 inhibition with TAK-242 did not offer further protection against the injury and inflammation. The protection of Ep3-/- was predominantly mediated by suppressing Mixed Lineage Kinase domain-Like-dependent necroptosis, resulting from the inhibition of cytokine generation and the switching of cell death modality from necroptosis to apoptosis through caspase-8 up-regulation, in part due to the restraint of IL-6/JAK2/STAT3 signaling. EP3 deficiency failed to further alleviate the injury when necroptosis was inhibited. Ep3-/- in bone marrow-derived cells, particularly that in myeloid cells, protected kidneys to the same extent as that of global EP3 deletion. Thus, our results demonstrate that EP3 deficiency especially that on myeloid cells, ameliorates ischemic AKI via curbing inflammation and breaking the auto-amplification loop of necroinflammation. Hence, EP3 may be a promising target for the prevention and/or treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Animales , Ratones , Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo , Apoptosis/fisiología , Isquemia/metabolismo , Riñón/metabolismo , Prostaglandinas/metabolismo , Inflamación/metabolismo , Células Mieloides/metabolismo , Citocinas/metabolismo , Ratones Endogámicos C57BL
4.
FASEB J ; 36(5): e22293, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349198

RESUMEN

The F prostanoid receptor (FP), which accounts for the therapeutic effect of PGF2α in uterine atony that leads to postpartum hemorrhage and maternal morbidity, could possibly mediate vasoconstrictor effect in small or resistance arteries to elevate blood pressure that limits the clinical use of the agent in patients with cardiovascular disorders. This study aimed to test the above hypothesis with genetically altered mice. Ex vivo and in vivo experiments were performed on control wild-type (WT) mice and mice with deficiencies in FP (FP-/- ) or thromboxane (Tx)-prostanoid receptor (the original receptor of TxA2 ; TP-/- ), and/or those with an additional deficiency in E prostanoid receptor-3 (one of the vasoconstrictor receptors of PGE2 ; EP3-/- ). Here, we show that PGF2α indeed evoked vasoconstrictor responses in the above-mentioned tissues of WT mice, which were however unaltered by FP-/- . Interestingly, such contractile responses were reversed into dilations by TP-/- /EP3-/- . A similar pattern of results was observed with the pressor effect of PGF2α under in vivo conditions. However, TP-/- alone (which could largely remove the contractile responses) did not result in relaxation to PGF2α . Also, either the ex vivo vasodilator effect or the in vivo depressor response of PGF2α obtained after the removal of TP and EP3-mediated actions was unaltered by FP-/- . Therefore, both the ex vivo vasoconstrictor action in small or resistance arteries and the systemic pressor effect of PGF2α can reflect vasoconstrictor activities derived from the non-FP receptors TP and EP3 outweighing a concurrently activated dilator effect, which is again independent of FP.


Asunto(s)
Receptores de Prostaglandina , Vasoconstrictores , Animales , Femenino , Ratones , Prostaglandinas , Prostaglandinas F , Receptores de Prostaglandina/genética , Receptores de Tromboxanos/genética , Vasoconstrictores/farmacología
5.
FASEB J ; 34(12): 16105-16116, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33047360

RESUMEN

Vasomotor reactions of prostacyclin (prostaglandin I2 ; PGI2 ) can be collectively modulated by thromboxane prostanoid receptor (TP), E-prostanoid receptor-3 (EP3), and the vasodilator I prostanoid receptor (IP). This study aimed to determine the direct effect of PGI2 on renal arteries and/or the whole renal vasculature and how each of these receptors is involved. Experiments were performed on vessels or perfused kidneys of wild-type mice and/or mice with deficiency in TP (TP-/- ) and/or EP3. Here we show that PGI2 did not evoke relaxation, but instead resulted in contraction of main renal arteries (from ~0.001-0.01 µM) or reduction of flow in perfused kidneys (from ~1 µM); either of them was reversed into a dilator response in TP-/- /EP3-/- counterparts. Also, we found that in renal arteries although it has a lesser effect than TP-/- on the maximal contraction to PGI2 (10 µM), EP3-/- but not TP-/- resulted in relaxation to the prostanoid at 0.01-1 µM. Meanwhile, TP-/- only significantly reduced the contractile activity evoked by PGI2 at ≥0.1 µM. These results demonstrate that PGI2 may evoke an overall vasoconstrictor response in the mouse renal vasculature, reflecting activities of TP and EP3 outweighing that of the vasodilator IP. Also, our results suggest that EP3, on which PGI2 can have a potency similar to that on IP, plays a major role in the vasoconstrictor effect of the prostanoid of low concentrations (≤1 µM), while TP, on which PGI2 has a lower potency but higher efficacy, accounts for a larger part of its maximal contractile activity.


Asunto(s)
Epoprostenol/farmacología , Riñón/efectos de los fármacos , Prostaglandinas/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Receptores de Tromboxanos/metabolismo , Arteria Renal/efectos de los fármacos , Vasoconstrictores/farmacología , Animales , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Prostaglandinas I/farmacología , Arteria Renal/metabolismo , Vasoconstricción/efectos de los fármacos
6.
FASEB J ; 34(2): 2568-2578, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908041

RESUMEN

Although recognized to have an in vivo vasodepressor effect blunted by the vasoconstrictor effect of E-prostanoid receptor-3 (EP3), prostaglandin E2 (PGE2 ) evokes contractions of many vascular beds that are sensitive to antagonizing the thromboxane prostanoid receptor (TP). This study aimed to determine the direct effect of PGE2 on renal arteries and/or the whole renal vasculature and how each of these two receptors is involved in the responses. Experiments were performed on isolated vessels and perfused kidneys of wild-type mice and/or mice with deficiency in TP (TP-/- ), EP3 (EP3-/- ), or both TP and EP3 (TP-/- /EP3-/- ). Here we show that PGE2 (0.001-30 µM) evoked not only contraction of main renal arteries, but also a decrease of flow in perfused kidneys. EP3-/- diminished the response to 0.001-0.3 µM PGE2 , while TP-/- reduced that to the prostanoid of higher concentrations. In TP-/- /EP3-/- vessels and perfused kidneys, PGE2 did not evoke contraction but instead resulted in vasodilator responses. These results demonstrate that PGE2 functions as an overall direct vasoconstrictor of the mouse renal vasculature with an effect reflecting the vasoconstrictor activities outweighing that of dilation. Also, our results suggest that EP3 dominates the vasoconstrictor effect of PGE2 of low concentrations (≤0.001-0.3 µM), but its effect is further added by that of TP, which has a higher efficacy, although activated by higher concentrations (from 0.01 µM) of the same prostanoid PGE2 .


Asunto(s)
Dinoprostona/farmacología , Subtipo EP3 de Receptores de Prostaglandina E/efectos de los fármacos , Receptores de Tromboxanos/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Animales , Dinoprost/farmacología , Riñón/efectos de los fármacos , Ratones Endogámicos C57BL , Prostaglandinas/farmacología , Receptores de Prostaglandina/efectos de los fármacos , Tromboxanos/farmacología , Vasoconstricción/fisiología , Vasoconstrictores/farmacología
7.
Methods Mol Biol ; 2831: 59-71, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134843

RESUMEN

Dendrites of neurons receive synaptic or sensory inputs and are important sites of neuronal computation. The morphological features of dendrites not only are hallmarks of the neuronal type but also largely determine a neuron's function. Thus, dendrite morphogenesis has been a subject of intensive study in neuroscience. Quantification of dendritic morphology, which is required for accurate assessment of phenotypes, can often be a challenging task, especially for complex neurons. Because manual tracing of dendritic branches is labor-intensive and time-consuming, automated or semiautomated methods are required for efficient analysis of a large number of samples. A popular in vivo model system for studying the mechanisms of dendrite morphogenesis is dendritic arborization (da) neurons in the Drosophila larval peripheral nervous system. In this chapter, we introduce methods for visualizing and measuring the dendritic arbors of these neurons. We begin with an introduction of da neurons and an overview of the methods that have been used for measuring da neuron dendrites. We then discuss the techniques and detailed steps of neuron visualization and image acquisition. Finally, we provide example steps for dendrite tracing and measurement.


Asunto(s)
Dendritas , Animales , Dendritas/fisiología , Drosophila/citología , Larva/citología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología , Procesamiento de Imagen Asistido por Computador/métodos
8.
bioRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37873262

RESUMEN

Animal development involves numerous molecular events, whose spatiotemporal properties largely determine the biological outcomes. Conventional methods for studying gene function lack the necessary spatiotemporal resolution for precise dissection of developmental mechanisms. Optogenetic approaches are powerful alternatives, but most existing tools rely on exogenous designer proteins that produce narrow outputs and cannot be applied to diverse or endogenous proteins. To address this limitation, we developed OptoTrap, a light-inducible protein trapping system that allows manipulation of endogenous proteins tagged with GFP or split GFP. This system turns on fast and is reversible in minutes or hours. We generated OptoTrap variants optimized for neurons and epithelial cells and demonstrate effective trapping of endogenous proteins of diverse sizes, subcellular locations, and functions. Furthermore, OptoTrap allowed us to instantly disrupt microtubules and inhibit the kinesin-1 motor in specific dendritic branches of Drosophila sensory neurons. Using OptoTrap, we obtained direct evidence that microtubules support the growth of highly dynamic dendrites. Similarly, targeted manipulation of Kinesin heavy chain revealed differential spatiotemporal requirements of kinesin-1 in the patterning of low- and high-order dendritic branches, suggesting that different cargos are needed for the growth of these branches. OptoTrap allows for precise manipulation of endogenous proteins in a spatiotemporal manner and thus holds great promise for studying developmental mechanisms in a wide range of cell types and developmental stages.

9.
Eur J Pharmacol ; 956: 175963, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543159

RESUMEN

Prostaglandin (PG) D2, a commonly considered vasodilator through D prostanoid receptor-1 (DP1), might also evoke vasoconstriction via acting on the thromboxane (Tx)-prostanoid receptor (the original receptor of TxA2; TP) and/or E prostanoid receptor-3 (one of the vasoconstrictor receptors of PGE2; EP3). This study aimed to test the above hypothesis in the mouse renal vascular bed (main renal arteries and perfused kidneys) and/or mesenteric resistance arteries and determine how the vasoconstrictor mechanism influences the overall PGD2 effect on systemic blood pressure under in vivo conditions. Experiments were performed on control wild-type (WT) mice and mice with deficiencies in TP (TP-/-) and/or EP3 (EP3-/-). Here we show that PGD2 indeed evoked vasoconstrictor responses in the above-mentioned tissues of WT mice, which were however not only reduced by TP-/- or EP3-/-, but also reversed by TP-/-/EP3-/- in some of the above tissues (mesenteric resistance arteries or perfused kidneys) to dilator reactions that were reduced by non-selective DP antagonism. A slight or mild pressor response was also observed with PGD2 under in vivo conditions, and this was again reversed to a depressor response in TP-/- or TP-/-/EP3-/- mice. Non-selective DP antagonism reduced the PGD2-evoked depressor response in TP-/-/EP3-/- mice as well. These results thus demonstrate that like other PGs, PGD2 activates TP and/or EP3 to evoke vasoconstrictor activities, which can outweigh its concurrent vasodepressor activity mediated mainly through DP1, and hence result in a pressor response, although the response might only be of a slight or mild extent.


Asunto(s)
Prostaglandinas , Vasoconstrictores , Ratones , Animales , Tromboxanos , Receptores de Tromboxanos , Subtipo EP3 de Receptores de Prostaglandina E , Receptores de Prostaglandina , Prostaglandina D2/farmacología
10.
Elife ; 112022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36135925

RESUMEN

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 provides a highly efficient and flexible genome editing technology with numerous potential applications ranging from gene therapy to population control. Some proposed applications involve the integration of CRISPR/Cas9 endonucleases into an organism's genome, which raises questions about potentially harmful effects to the transgenic individuals. One example for which this is particularly relevant are CRISPR-based gene drives conceived for the genetic alteration of entire populations. The performance of such drives can strongly depend on fitness costs experienced by drive carriers, yet relatively little is known about the magnitude and causes of these costs. Here, we assess the fitness effects of genomic CRISPR/Cas9 expression in Drosophila melanogaster cage populations by tracking allele frequencies of four different transgenic constructs that allow us to disentangle 'direct' fitness costs due to the integration, expression, and target-site activity of Cas9, from fitness costs due to potential off-target cleavage. Using a maximum likelihood framework, we find that a model with no direct fitness costs but moderate costs due to off-target effects fits our cage data best. Consistent with this, we do not observe fitness costs for a construct with Cas9HF1, a high-fidelity version of Cas9. We further demonstrate that using Cas9HF1 instead of standard Cas9 in a homing drive achieves similar drive conversion efficiency. These results suggest that gene drives should be designed with high-fidelity endonucleases and may have implications for other applications that involve genomic integration of CRISPR endonucleases.


Asunto(s)
Endonucleasas , Tecnología de Genética Dirigida , Animales , Animales Modificados Genéticamente , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética
11.
Elife ; 92020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32427101

RESUMEN

During prolonged nutrient restriction, developing animals redistribute vital nutrients to favor brain growth at the expense of other organs. In Drosophila, such brain sparing relies on a glia-derived growth factor to sustain proliferation of neural stem cells. However, whether other aspects of neural development are also spared under nutrient restriction is unknown. Here we show that dynamically growing somatosensory neurons in the Drosophila peripheral nervous system exhibit organ sparing at the level of arbor growth: Under nutrient stress, sensory dendrites preferentially grow as compared to neighboring non-neural tissues, resulting in dendrite overgrowth. These neurons express lower levels of the stress sensor FoxO than neighboring epidermal cells, and hence exhibit no marked induction of autophagy and a milder suppression of Tor signaling under nutrient stress. Preferential dendrite growth allows for heightened animal responses to sensory stimuli, indicative of a potential survival advantage under environmental challenges.


The organs of a young animal develop in a carefully controlled way to reach the right size relative to each other. However, if the animal's diet does not contain the right amount of nutrients ­ a condition known as malnutrition ­ the body prioritizes the needs of the brain and other vital organs. This means that certain organs keep on growing while others stop. The brain is at the center of the nervous system, which is formed of networks of nerve cells (or neurons) that rapidly carry messages around the body. In the larvae of malnourished fruit flies, a molecular signal allows the nervous system to continue making new neurons as other parts of the body slow down their growth. During development, neurons also connect to each other by growing tree-like structures known as dendrites. However, it remained unclear whether the growth of dendrites was also protected during episodes of malnutrition. To address this question, Poe, Xu et al. performed experiments in the larvae of fruit flies, focusing on a type of neuron whose dendrites extend into the skin. When nutrients were scarce, the neurons grew more rapidly than the surrounding skin cells, resulting in dendrite overgrowth. Compared to neurons, the skin cells had higher levels of a stress sensor known as FoxO, which stops cell growth when nutrients are scarce. Conversely, low quantities of FoxO in neurons allow these cells to keep on growing dendrites, which ultimately helps the starved animals to better react to their environment. These results suggest that the growth of neurons and their connecting structures is preserved during malnutrition. Ultimately, dissecting how organisms prioritize resources can help to develop new approaches to treat human conditions that emerge during malnutrition.


Asunto(s)
Dendritas/fisiología , Proteínas de Drosophila/fisiología , Drosophila/crecimiento & desarrollo , Privación de Alimentos , Factores de Transcripción Forkhead/fisiología , Neurogénesis/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Autofagia , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/metabolismo , Células Epidérmicas/fisiología , Femenino , Factores de Transcripción Forkhead/biosíntesis , Sistema de Señalización de MAP Quinasas , Masculino , Nutrientes , Proteínas Tirosina Quinasas Receptoras/metabolismo , Estrés Fisiológico
12.
Front Physiol ; 10: 1247, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611817

RESUMEN

Endothelial dysfunction, which leads to ischemic events under atherosclerotic conditions, can be attenuated by antagonizing the thromboxane-prostanoid receptor (TP) that mediates the vasoconstrictor effect of prostanoids including prostacyclin (PGI2). This study aimed to determine whether antagonizing the E prostanoid receptor-3 (EP3; which can also be activated by PGI2) adds to the above effect of TP deficiency (TP-/-) under atherosclerotic conditions and if so, the underlying mechanism(s). Atherosclerosis was induced in ApoE-/- mice and those with ApoE-/- and TP-/-. Here, we show that in phenylephrine pre-contracted abdominal aortic rings with atherosclerotic lesions of ApoE-/-/TP-/- mice, although an increase of force (which was larger than that of non-atherosclerotic controls) evoked by the endothelial muscarinic agonist acetylcholine to blunt the concurrently activated relaxation in ApoE-/- counterparts was largely removed, the relaxation evoked by the agonist was still smaller than that of non-atherosclerotic TP-/- mice. EP3 antagonism not only increased the above relaxation, but also reversed the contractile response evoked by acetylcholine in NO synthase-inhibited atherosclerotic ApoE-/-/TP-/- rings into a relaxation sensitive to I prostanoid receptor antagonism. In ApoE-/- atherosclerotic vessels the expression of endothelial NO synthase was decreased, yet the production of PGI2 (which evokes contraction via both TP and EP3) evoked by acetylcholine was unaltered compared to non-atherosclerotic conditions. These results demonstrate that EP3 blockade adds to the effect of TP-/- in uncovering the dilator action of natively produced PGI2 to alleviate endothelial dysfunction in atherosclerotic conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA