Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(1): 47-83, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37853792

RESUMEN

Fullerene chemistry has come a long way since 1990, when the first bulk production of C60 was reported. In the past decade, progress in supramolecular chemistry has opened some remarkable and previously unexpected opportunities regarding the selective (multiple) functionalization of fullerenes and their (self)assembly into larger structures and frameworks. The purpose of this review article is to provide a comprehensive overview of these recent developments. We describe how macrocycles and cages that bind strongly to C60 can be used to block undesired addition patterns and thus allow the selective preparation of single-isomer addition products. We also discuss how the emergence of highly shape-persistent macrocycles has opened opportunities for the study of photoactive fullerene dyads and triads as well as the preparation of mechanically interlocked compounds. The preparation of two- or three-dimensional fullerene materials is another research area that has seen remarkable progress over the past few years. Due to the rapidly decreasing price of C60 and C70, we believe that these achievements will translate into all fields where fullerenes have traditionally (third-generation solar cells) and more recently been applied (catalysis, spintronics).

2.
J Am Chem Soc ; 146(8): 5186-5194, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38311922

RESUMEN

Isomer-pure functionalized fullerenes are required to boost the development of fullerene chemistry in any field, but their multiple functionalization renders a mixture of regioisomers that are very difficult to purify by chromatography. For the specific case of C70, its nonspherical geometry makes its regioselective functionalization more challenging than that of spherical C60. In this work, the supramolecular mask approach is applied for the first time to C70, which is encapsulated in two different nanocapsules to achieve the Bingel bis-cyclopropanation at α-bonds of opposite poles. Based on the tetragonal prismatic geometry imposed by the smaller supramolecular mask tested, the obtained major bis-adduct is completely reversed (major 5 o'clock) compared to bare C70 functionalization (major 2 o'clock). Moreover, by further restricting the accessibility of C70 using a three-shell Matryoshka mask and dibenzyl-bromomalonate, a single regiospecific 2 o'clock bis-isomer is obtained, owing to the perfect complementarity of the mask and the addend steric properties. The outcome of the reactions is fully explained at the molecular level by means of a thorough molecular dynamics (MD) study of the accessibility of the α-bonds to produce the different bis-adducts.

3.
J Am Chem Soc ; 146(19): 13226-13235, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700957

RESUMEN

Strained carbon nanohoops exhibit attractive photophysical properties due to their unique π-conjugated structure. However, incorporation of such nanohoops into the pincer ligand of metal complexes has rarely been explored. Herein, a new family of highly strained cyclometalated platinum(II) nanohoops has been synthesized and characterized. Strain-promoted C-H bond activation has been observed during the metal coordination process, and Hückel-Möbius topology and random-columnar packing in the solid state are found. Transient absorption spectroscopy revealed the size-dependent excited state properties of the nanohoops. Moreover, the nanohoops have been successfully employed as active materials in the fabrication of solution-processable resistive memory devices, including the use of the smallest platinum(II) nanohoop for the fabrication of a binary memory, with low switching threshold voltages of ca. 1.5 V, high ON/OFF current ratios, and good stability. These results demonstrate that strain incorporation into the structure can be an effective strategy to fundamentally fine-tune the reactivity, optoelectronic, and resistive memory properties.

4.
Sensors (Basel) ; 24(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38894263

RESUMEN

In order to improve the efficiency and accuracy of multitarget detection of soldering defects on surface-mounted components in Printed Circuit Board (PCB) fabrication, we propose a sample generation method using Stable Diffusion Model and ControlNet, as well as a defect detection method based on the Swin Transformer. The method consists of two stages: First, high-definition original images collected in industrial production and the corresponding prompts are input to Stable Diffusion Model and ControlNet for automatic generation of nonindependent samples. Subsequently, we integrate Swin Transformer as the backbone into the Cascade Mask R-CNN to improve the quality of defect features extracted from the samples for accurate detection box localization and segmentation. Instead of segmenting individual components on the PCB, the method inspects all components in the field of view simultaneously over a larger area. The experimental results demonstrate the effectiveness of our method in scaling up nonindependent sample datasets, thereby enabling the generation of high-quality datasets. The method accurately recognizes targets and detects defect types when performing multitarget inspection on printed circuit boards. The analysis against other models shows that our improved defect detection and segmentation method improves the Average Recall (AR) by 2.8% and the mean Average Precision (mAP) by 1.9%.

5.
Angew Chem Int Ed Engl ; 63(29): e202407034, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38708741

RESUMEN

Chirality, a fundamental principle in chemistry, biology, and medicine, is prevalent in nature and in organisms. Chiral molecules, such as DNA, RNA, and proteins, are crucial in biomolecular synthesis, as well as in the development of functional materials. Among these, 1,1'-binaphthyl-2,2'-diol (BINOL) stands out for its stable chiral configuration, versatile functionality, and commercial availability. BINOL is widely employed in asymmetric catalysis and chiral materials. This review mainly focuses on recent research over the past five years concerning the use of BINOL derivatives for constructing chiral macrocycles and cages. Their contributions to chiral luminescence, enantiomeric separation, transmembrane transport, and asymmetric catalysis were examined.

6.
J Lipid Res ; 64(3): 100337, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36716821

RESUMEN

Liver function indicators are often impaired in patients with type 2 diabetes mellitus (T2DM), who present higher concentrations of aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase than individuals without diabetes. However, the mechanism of liver injury in patients with T2DM has not been clearly elucidated. In this study, we performed a lipidomics analysis on the liver of T2DM mice, and we found that phosphatidylethanolamine (PE) levels were low in T2DM, along with an increase in diglyceride, which may be due to a decrease in the levels of phosphoethanolamine cytidylyltransferase (Pcyt2), thus likely affecting the de novo synthesis of PE. The phosphatidylserine decarboxylase pathway did not change significantly in the T2DM model, although both pathways are critical sources of PE. Supplementation with CDP-ethanolamine (CDP-etn) to increase the production of PE from the CDP-etn pathway reversed high glucose and FFA (HG&FFA)-induced mitochondrial damage including increased apoptosis, decreased ATP synthesis, decreased mitochondrial membrane potential, and increased reactive oxygen species, whereas supplementation with lysophosphatidylethanolamine, which can increase PE production in the phosphatidylserine decarboxylase pathway, did not. Additionally, we found that overexpression of PCYT2 significantly ameliorated ATP synthesis and abnormal mitochondrial morphology induced by HG&FFA. Finally, the BAX/Bcl-2/caspase3 apoptosis pathway was activated in hepatocytes of the T2DM model, which could also be reversed by CDP-etn supplements and PCYT2 overexpression. In summary, in the liver of T2DM mice, Pcyt2 reduction may lead to a decrease in the levels of PE, whereas CDP-etn supplementation and PCYT2 overexpression ameliorate partial mitochondrial function and apoptosis in HG&FFA-stimulated L02 cells.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fosfatidiletanolaminas , Ratones , Animales , Fosfatidiletanolaminas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , ARN Nucleotidiltransferasas/metabolismo , Etanolaminas/farmacología , Etanolaminas/metabolismo , Hepatocitos/metabolismo , Mitocondrias/metabolismo , Apoptosis , Adenosina Trifosfato/metabolismo
7.
Chemistry ; 29(16): e202203734, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36507855

RESUMEN

We investigate the gas-phase chemistry of noncovalent complexes of [10]cycloparaphenylene ([10]CPP) with C60 and C70 by means of atmospheric pressure photoionization and electrospray ionization mass spectrometry. The literature-known [1 : 1] complexes, namely [10]CPP⊃C60 and [10]CPP⊃C70 , are observed as radical cations and anions. Their stability and charge distribution are studied using energy-resolved collision-induced dissociation (ER-CID). These measurements reveal that complexes with a C70 core exhibit a greater stability and, on the other hand, that the radical cations are more stable than the respective radical anions. Regarding the charge distribution, in anionic complexes charges are exclusively located on C60 or C70 , while the charges reside on [10]CPP in the case of cationic complexes. [2 : 1] complexes of the ([10]CPP2 ⊃C60/70 )+ ⋅/- ⋅ type are observed for the first time as isolated solitary gas-phase species. Here, C60 -based [2 : 1] complexes are less stable than the respective C70 analogues. By virtue of the high stability of cationic [1 : 1] complexes, [2 : 1] complexes show a strongly reduced stability of the radical cations. DFT analyses of the minimum geometries as well as molecular dynamics calculations support the experimental data. Furthermore, our novel gas-phase [2 : 1] complexes are also found in 1,2-dichlorobenzene. Insights into the thermodynamic parameters of the binding process as well as the species distribution are derived from isothermal titration calorimetry (ITC) measurements.

8.
Angew Chem Int Ed Engl ; 62(24): e202302978, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-36988014

RESUMEN

Both pillar[n]arenes (P[n]As) and [n]cycloparaphenylenes ([n]CPPs) play an important role in supramolecular chemistry. Herein, we report the precise synthesis of two multifunctional bismacrocycles [n]CPP-P[5]A by integrating P[5]A into the [n]CPP backbone. The photoluminescence quantum yield (ΦF ) of the bismacrocycles was found to show a dramatic increase relative to the corresponding [n]CPPs. The chiral enantiomers (pR)/(pS)-[8]CPP-P[5]A were successfully isolated by chiral HPLC, and showed promising properties of circularly polarized luminescence (glum ≈0.02). In addition, [n]CPP-P[5]A bismacrocycles are capable of binding pyridinium salts and fullerene derivatives with high affinity and specificity within the two distinct cavities. Transient absorption studies showed that photo-induced electron transfer occurs in [10]CPP-P[5]A⊃C60 complex. Our results suggest that [n]CPP-P[5]A are potentially useful in CPL-active materials, multiple guest recognition and supramolecular polymer preparation.

9.
Biochem Biophys Res Commun ; 617(Pt 2): 55-61, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35696777

RESUMEN

The molecular mechanisms of uric acid (UA)-induced liver injury has not been clearly elucidated. In this study, we aimed to investigate the effect and action mechanisms of UA in liver injury. We analyzed the damaging effect of UA on mouse liver and L02 cells and subsequently performed metabolomics studies on L02 cells to identify abnormal metabolic pathways. Finally, we verified transcription factors that regulate related metabolic enzymes. UA directly activated the hepatic NLRP3 inflammasome and Bax apoptosis pathway invivo and invitro. Related metabolites in the arginine biosynthesis pathway (or urea cycle), l-arginine and l-argininosuccinate were decreased, and ammonia was increased in UA-stimulated L02 cells, which was mediated by carbamoyl phosphate synthase 1 (CPS1), argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL) downregulation. UA upregulated hypoxia inducible factor-1alpha (HIF-1α) invivo and invitro, and HIF-1α inhibition alleviated the UA-induced ASS downregulation and hepatocyte injury. In conclusion, UA upregulates HIF-1α and inhibits urea cycle enzymes (UCEs). This leads to liver injury, with evidence of hepatocyte inflammation, apoptosis and oxidative stress.


Asunto(s)
Hiperuricemia , Animales , Arginina/metabolismo , Argininosuccinato Sintasa , Hepatocitos/metabolismo , Humanos , Hiperuricemia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hígado/metabolismo , Ratones , Urea/metabolismo
10.
Inorg Chem ; 61(49): 20008-20025, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36426422

RESUMEN

The synthesis and biological assessment of neutral or cationic platinum group metal-based anticancer complexes have been extremely studied, whereas there are few reports on the corresponding zwitterionic complexes. Herein, the synthesis, characterization, and bioactivity of zwitterionic half-sandwich phosphine-imine iridium(III), rhodium(III), and ruthenium(II) complexes were presented. The sulfonated phosphine-imine ligand and a group of zwitterionic half-sandwich P,N-chelating organometallic complexes were fully characterized by nuclear magnetic resonance (NMR), mass spectrum (electrospray ionization, ESI), elemental analysis, and X-ray crystallography. The solution stability of these complexes and their spectral properties were also determined. Notably, almost all of these complexes showed enhanced anticancer activity against model HeLa and A549 cancer cells than the corresponding zwitterionic pyridyl-imine N,N-chelating iridium(III) and ruthenium(II) complexes, which have exhibited inactive or low active in our previous work. The increase in the lipophilic property and intracellular uptake levels of these zwitterionic P,N-chelating complexes appeared to be associated with their superior cytotoxicity. In addition, these complexes showed biomolecular interactions with bovine serum albumin (BSA). The flow cytometry studies indicated that the representative complex Ir1 could induce early-stage apoptosis in A549 cells. Further, confocal microscopy imaging analysis displayed that Ir1 entered A549 cells through the energy-dependent pathway, targeted lysosome, and could cause lysosomal damage. In particular, these complexes could impede cell migration in A549 cells.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rodio , Rutenio , Humanos , Iridio/farmacología , Iridio/química , Rutenio/farmacología , Rutenio/química , Rodio/farmacología , Rodio/química , Complejos de Coordinación/química , Antineoplásicos/química , Modelos Moleculares , Iminas/química , Línea Celular Tumoral
11.
FASEB J ; 34(10): 13474-13493, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32780898

RESUMEN

Potential underlying molecular mechanisms for uric acid-induced lipid metabolic disturbances had not been elucidated clearly. This study investigated the effects and underlying mechanisms of uric acid on the development of lipid metabolic disorders. We collected blood samples from 100 healthy people and 100 patients with hyperuricemia for whom serum lipid analysis was performed. Meanwhile, a mouse model of hyperuricemia was generated, and lipidomics was performed on liver tissues, comparing control and hyperuricemia groups, to analyze lipid profiles and key metabolic enzymes. Uric acid directly induced serum lipid metabolic disorders in both humans and mice based on triglycerides, total cholesterol, and low-density lipoprotein cholesterol. Through lipidomic analysis, 46 lipids were differentially expressed in hyperuricemic mouse livers, and the phosphatidylcholine composition was altered, which was mediated by LPCAT3 upregulation. High-uric acid levels-induced p-STAT3 inhibition and SREBP-1c activation in vivo and in vitro. Moreover, LPCAT3-knockdown significantly attenuated uric acid-induced p-STAT3 inhibition, SREBP-1c activation, and lipid metabolic disorders in L02 cells. In conclusion, uric acid induces lipid metabolic disturbances through LPCAT3-mediated p-STAT3 inhibition and SREBP-1c activation. LPCAT3 could be a key regulatory factor linking hyperuricemia and lipid metabolic disorders. These results might provide novel insights into the clinical treatment of hyperuricemia.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/fisiología , Hiperuricemia/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo , Ácido Úrico/metabolismo , Adulto , Animales , Estudios de Casos y Controles , Colesterol/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Factor de Transcripción STAT3/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
12.
Molecules ; 26(4)2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33670007

RESUMEN

A novel series of 4-(4-formamidophenylamino)-N-methylpicolinamide derivatives were synthesized and evaluated against different tumor cell lines. Experiments in vitro showed that these derivatives could inhibit the proliferation of two kinds of human cancer cell lines (HepG2, HCT116) at low micromolar concentrations and the most potent analog 5q possessed broad-spectrum antiproliferative activity. Experiments in vivo demonstrated that 5q could effectively prolong the longevity of colon carcinoma-burdened mice and slow down the progression of cancer cells by suppression of angiogenesis and the induction of apoptosis and necrosis.


Asunto(s)
Antineoplásicos/farmacología , Ácidos Picolínicos/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Ácidos Picolínicos/síntesis química , Ácidos Picolínicos/química , Células Tumorales Cultivadas
13.
Chemistry ; 26(40): 8729-8741, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32476186

RESUMEN

[n]Cycloparaphenylenes ([n]CPPs) with n=5, 8, 10 and 12 and their noncovalent ring-in-ring and [m]fullerene-in-ring complexes with m=60, 70 and 84 have been studied by direct and matrix-assisted laser desorption ionization ((MA)LDI) and density-functional theory (DFT). LDI is introduced as a straightforward approach for the sensitive analysis of CPPs, free from unwanted decomposition and without the need of a matrix. The ring-in-ring system of [[10]CPP⊃[5]CPP]+. was studied in positive-ion MALDI. Fragmentation and DFT indicate that the positive charge is exclusively located on the inner ring, while in [[10]CPP⊃C60 ]+. it is located solely on the outer nanohoop. Positive-ion MALDI is introduced as a new sensitive method for analysis of CPP⊃fullerene complexes, enabling the detection of novel complexes [[12]CPP⊃C60, 70 and 84 ]+. and [[10]CPP⊃C84 ]+. . Selective binding can be observed when mixing one fullerene with two CPPs or vice versa, reflecting ideal size requirements for efficient complex formation. Geometries, binding and fragmentation energies of CPP⊃fullerene complexes from DFT calculations explain the observed fragmentation behavior.

14.
Angew Chem Int Ed Engl ; 59(2): 559-573, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31190449

RESUMEN

Since 1996, a growing number of strained macrocycles, comprising only sp2 - or sp-hybridized carbon atoms within the ring, have become synthetically accessible, with the [n]cycloparaphenyleneacetylenes (CPPAs) and the [n]cycloparaphenylenes (CPPs) being the most prominent examples. Now that robust and relatively general synthetic routes toward a diverse range of nanohoop structures have become available, the research focus is beginning to shift towards the exploration of their properties and applications. From a supramolecular chemistry perspective, these macrocycles offer unique opportunities as a result of their near-perfect circular shape, the unusually high degree of shape-persistence, and the presence of both convex and concave π-faces. In this Minireview, we give an overview on the use of strained carbon-rich nanohoops in host-guest chemistry, the preparation of mechanically interlocked architectures, and crystal engineering.

15.
J Am Chem Soc ; 141(46): 18500-18507, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31710474

RESUMEN

Small π-conjugated nanohoops are difficult to prepare, but offer an excellent platform for studying the interplay between strain and optoelectronic properties, and, increasingly, these shape-persistent macrocycles find uses in host-guest chemistry and self-assembly. We report the synthesis of a new family of radially π-conjugated porphyrinylene/phenylene nanohoops. The strain energy in the smallest nanohoop [2]CPT is approximately 54 kcal mol-1, which results in a narrowed HOMO-LUMO gap and a red shift in the visible part of the absorption spectrum. Because of its high degree of preorganization and a diameter of ca. 13 Å, [2]CPT was found to accommodate C60 with a binding affinity exceeding 108 M-1 despite the fullerene not fully entering the cavity of the host (X-ray crystallography). Moreover, the π-extended nanohoops [2]CPTN, [3]CPTN, and [3]CPTA (N for 1,4-naphthyl; A for 9,10-anthracenyl) have been prepared using the same strategy, and [2]CPTN has been shown to bind C70 5 times more strongly than [2]CPT. Our failed synthesis of [2]CPTA highlights a limitation of the experimental approach most commonly used to prepare strained nanohoops, because in this particular case the sum of aromatization energies no longer outweighs the buildup of ring strain in the final reaction step (DFT calculations). These results indicate that forcing ring strain onto organic semiconductors is a viable strategy to fundamentally influence both optoelectronic and supramolecular properties.

16.
J Am Chem Soc ; 140(41): 13413-13420, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30234982

RESUMEN

The cycloparaphenylenes (CPPs) are a class of strained macrocycles that until 2008 were considered beyond the reach of organic synthesis. With its cyclic array of ten para-substituted phenylene rings, [10]CPP possesses a concave π-system that is perfectly preorganized for the strong supramolecular association of convex fullerenes such as C60. Although mechanically interlocked CPP architectures have been observed in the gas phase, the rational synthesis of bulk quantities has not been achieved yet, which is likely due to the fact that conventional template strategies are not amenable to CPP rings that lack heteroatoms. Here, we report the synthesis of two [2]rotaxanes in which a [10]CPP ring binds to a central fullerene bis-adduct and is prevented from dethreading by the presence of two bulky fullerene hexakis-adduct stoppers. The final step in the rotaxane synthesis is surprisingly efficient (up to ca. 40% yield) and regioselective because the fullerene acts as an efficient convex template, while [10]CPP acts as a supramolecular directing group, steering the reaction at the central fullerene exclusively toward two trans regioisomers. Comprehensive physicochemical studies confirmed the interlocked structure, shed light on the dynamic nature of the CPP-fullerene interaction, and revealed intriguing consequences of the mechanical bond on charge transfer processes. In light of recent advances in the synthesis of nanohoops and nanobelts, our concave-convex π-π templating strategy may be broadly useful and enable applications in molecular electronics or complex molecular machinery.

17.
Mol Carcinog ; 57(5): 619-628, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29323748

RESUMEN

SHP2 is encoded by the protein tyrosine phosphatase 11 (Ptpn11) gene. Several gain-of-function (GOF) mutations in Ptpn11 have been identified in human hematopoietic malignancies and solid tumors. In addition, the mutation rate for SHP2 is the highest for colorectal cancer (CRC) among solid tumors. The E76K GOF mutation is the most common and active SHP2 mutation; however, the pathogenic effects and function of this mutation in CRC tumor progression have not been well characterized. The Wnt/ß-catenin (CTNNB1) signaling pathway is crucial for CRC, and excessive activation of this pathway has been observed in several tumors. We used Ptpn11E76K conditional knock-in mice to study this GOF mutation in colitis-associated CRC (CAC) and used the CRC cell lines HT29 and HCT116 to determine the relationship between SHP2 and Wnt/ß-catenin signaling. Ptpn11E76K conditional knock-in mice exhibited aggravated inflammation and increased CAC tumorigenesis. In vitro, SHP2E76K and SHP2WT promoted malignant biological behaviors of CRC cells and induced epithelial-mesenchymal transition (EMT) via the Wnt/ß-catenin signaling pathway. Together, our results showed that SHP2E76K acts as an oncogene that promotes the tumorigenesis and metastasis of CRC.


Asunto(s)
Colitis/genética , Neoplasias Colorrectales/patología , Mutación con Ganancia de Función , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Animales , Transformación Celular Neoplásica , Colitis/complicaciones , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal , Técnicas de Sustitución del Gen , Células HCT116 , Células HT29 , Humanos , Ratones , Tasa de Mutación , Vía de Señalización Wnt , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Int J Mol Sci ; 19(10)2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30287730

RESUMEN

δ-Tocotrienol, an important component of vitamin E, has been reported to possess some physiological functions, such as anticancer and anti-inflammation, however their molecular mechanisms are not clear. In this study, δ-tocotrienol was isolated and purified from rice bran. The anti-inflammatory effect and mechanism of δ-tocotrienol against lipopolysaccharides (LPS) activated pro-inflammatory mediator expressions in RAW264.7 cells were investigated. Results showed that δ-tocotrienol significantly inhibited LPS-stimulated nitric oxide (NO) and proinflammatory cytokine (TNF-α, IFN-γ, IL-1ß and IL-6) production and blocked the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 (ERK1/2). δ-Tocotrienol repressed the transcriptional activations and translocations of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1), which were closely related with downregulated cytokine expressions. Meanwhile, δ-tocotrienol also affected the PPAR signal pathway and exerted an anti-inflammatory effect. Taken together, our data showed that δ-tocotrienol inhibited inflammation via mitogen-activated protein kinase (MAPK) and peroxisome proliferator-activated receptor (PPAR) signalings in LPS-stimulated macrophages.


Asunto(s)
Antiinflamatorios/farmacología , Sistema de Señalización de MAP Quinasas , Macrófagos/efectos de los fármacos , Oryza/química , Vitamina E/análogos & derivados , Animales , Línea Celular , Citocinas/metabolismo , Lipopolisacáridos/toxicidad , MAP Quinasa Quinasa 4/metabolismo , Macrófagos/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Vitamina E/análisis , Vitamina E/farmacología
19.
Angew Chem Int Ed Engl ; 57(36): 11549-11553, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-29985554

RESUMEN

Efficient photoinduced electron transfer was observed across a [10]cycloparaphenylene ([10]CPP) moiety that serves as a rigid non-covalent bridge between a zinc porphyrin and a range of fullerenes. The preparation of iodo-[10]CPP is the key to the synthesis of a porphyrin-[10]CPP conjugate, which binds C60 , C70 , (C60 )2 , and other fullerenes (KA >105 m-1 ). Fluorescence and pump-probe spectroscopy revealed intramolecular energy transfer between CPP and porphyrin and also efficient charge separation between porphyrin and fullerenes, affording up to 0.5 µs lifetime charge-separated states. The advantage of this approach towards electron donor-acceptor dyads is evident in the case of dumbbell-shaped (C60 )2 , which gave intricate charge-transfer behavior in 1:1 and 2:1 complexes. These results suggest that [10]CPP and its cross-coupled derivatives could act as supramolecular mediators of charge transport in organic electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA