Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(7): e0045623, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37310210

RESUMEN

Pellicles are biofilms that form at the air-liquid interface. We demonstrated that specific strains of Escherichia coli formed pellicles in single cultures when cocultured with Carnobacterium maltaromaticum and E. coli O157:H7 but not with Aeromonas australiensis. Therefore, a combination of comparative genomic, mutational, and transcriptome analyses were applied to identify the unique genes in pellicle formation and investigate gene regulation under different growth phases. Here, we report that pellicle-forming strains do not harbor unique genes relative to non-pellicle-forming strains; however, the expression level of biofilm-related genes differed, especially for the genes encoding curli. Further, the regulatory region of curli biosynthesis is phylogenetically different among pellicle- and non-pellicle-forming strains. The disruption on modified cellulose and regulatory region of curli biosynthesis abolished pellicle formation in strains of E. coli. Besides, the addition of quorum sensing molecules (C4-homoserine lactones [C4-HSL]), synthesized by Aeromonas species, to pellicle formers abolished pellicle formation and implied a role of quorum sensing on pellicle formation. The deletion of autoinducer receptor sdiA in E. coli did not restore pellicle formation when cocultured with A. australiensis but modulated expression level of genes for curli and cellulose biosynthesis, resulting in a thinner layer of pellicle. Taken together, this study identified genetic determinants for pellicle formation and characterized the switching between pellicle to surface-associated biofilm in a dual-species environment, facilitating better understanding of the mechanisms for pellicle formation in E. coli and related organisms. IMPORTANCE To date, most attention has focused on biofilm formation on solid surfaces. By comparison, the knowledge on pellicle formation at the air-liquid interface is more limited and few studies document how bacteria decide on whether to form biofilms on solid surfaces or pellicles at the air-liquid interface to the surface-associated biofilms at the bottom. In this report, we characterized the regulation of biofilm-related genes during pellicle formation and document that interspecies communication via quorum sensing contributes to regulating the switch from pellicle to surface-associated biofilm. The discoveries expand the current view of regulatory cascades associated with pellicle formation.


Asunto(s)
Aeromonas , Escherichia coli O157 , Biopelículas , Aeromonas/metabolismo , Escherichia coli O157/fisiología , Genómica , Celulosa/metabolismo
2.
Microorganisms ; 11(6)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37375077

RESUMEN

Microbial spoilage is a major cause of food waste. Microbial spoilage is dependent on the contamination of food from the raw materials or from microbial communities residing in food processing facilities, often as bacterial biofilms. However, limited research has been conducted on the persistence of non-pathogenic spoilage communities in food processing facilities, or whether the bacterial communities differ among food commodities and vary with nutrient availability. To address these gaps, this review re-analyzed data from 39 studies from various food facilities processing cheese (n = 8), fresh meat (n = 16), seafood (n = 7), fresh produce (n = 5) and ready-to-eat products (RTE; n = 3). A core surface-associated microbiome was identified across all food commodities, including Pseudomonas, Acinetobacter, Staphylococcus, Psychrobacter, Stenotrophomonas, Serratia and Microbacterium. Commodity-specific communities were additionally present in all food commodities except RTE foods. The nutrient level on food environment surfaces overall tended to impact the composition of the bacterial community, especially when comparing high-nutrient food contact surfaces to floors with an unknown nutrient level. In addition, the compositions of bacterial communities in biofilms residing in high-nutrient surfaces were significantly different from those of low-nutrient surfaces. Collectively, these findings contribute to a better understanding of the microbial ecology of food processing environments, the development of targeted antimicrobial interventions and ultimately the reduction of food waste and food insecurity and the promotion of food sustainability.

3.
Int J Food Microbiol ; 359: 109425, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34607035

RESUMEN

Biofilm formation in food processing plants reduces the efficacy of sanitation. The presence of transmissible locus of stress tolerance (tLST) also enhances resistance of planktonic cells of Escherichia coli to sanitation chemicals but the role of tLST in resistance of biofilm-embedded cells remains unclear. This study investigated the link of tLST to biofilm formation and its contribution to resistance of biofilm-embedded E. coli to sanitation. Biofilms were formed as single-strain and as dual-strain biofilms in association with E. coli, Aeromonas australensis or Carnobacterium maltaromaticum. Biofilms on stainless steel were compared to floating biofilms formed at the air-liquid interface (pellicles). The resistance of biofilm-embedded tLST positive strains of E. coli to chlorine, hydrogen peroxide, and peroxyacetic acid was higher than the resistance of tLST negative strains. Higher biofilm density as measured by crystal violet staining was observed in tLST-positive strains of E. coli when compared to tLST negative strains. Biofilm density positively correlated to resistance to disinfectants. The use of confocal laser scanning microscopy detected more compact structure of pellicles compared to solid surface-attached biofilms, resulting in higher chlorine resistance despite the absence of tLST in strains of E. coli. Collectively, the findings of this study elucidated the impact of tLST in strains of E. coli on biofilm formation and sanitizer resistance. These findings may inform the development of improved sanitization protocols for food facilities.


Asunto(s)
Desinfectantes/farmacología , Escherichia coli , Saneamiento , Biopelículas , Carnobacterium , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA