Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Am Chem Soc ; 146(10): 6675-6685, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427024

RESUMEN

Peptide stapling is recognized as an effective strategy for improving the proteolytic stability and cell permeability of peptides. In this study, we present a novel approach for the site-selective unsymmetric perfluoroaryl stapling of Ser and Cys residues in unprotected peptides. The stapling reaction proceeds smoothly under very mild conditions, exhibiting a remarkably rapid reaction rate. It can furnish stapled products in both liquid and solid phases, and the presence of nucleophilic groups other than Cys thiol within the peptide does not impede the reaction, resulting in uniformly high yields. Importantly, the chemoselective activation of Ser ß-C(sp3)-H enables the unreacted -OH to serve as a reactive handle for subsequent divergent modification of the staple moiety with various therapeutic functionalities, including a clickable azido group, a polar moiety, a lipid tag, and a fluorescent dye. In our study, we have also developed a visible-light-induced chemoselective C(sp3)-H polyfluoroarylation of the Ser ß-position. This reaction avoids interference with the competitive reaction of Ser -OH, enabling the precise late-stage polyfluoroarylative modification of Ser residues in various unprotected peptides containing other highly reactive amino acid residues. The biological assay suggested that our peptide stapling strategy would potentially enhance the proteolytic stability and cellular permeability of peptides.


Asunto(s)
Aminoácidos , Péptidos , Péptidos/química , Compuestos de Sulfhidrilo/química , Colorantes Fluorescentes , Péptido Hidrolasas
2.
Acc Chem Res ; 56(15): 2110-2125, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467427

RESUMEN

ConspectusPeptides are essential components of living systems and contribute to critical biological processes, such as cell proliferation, immune defense, tumor formation, and differentiation. Therefore, peptides have attracted considerable attention as targets for the development of therapeutic products. The incorporation of unnatural amino acid residues into peptides can considerably impact peptide immunogenicity, toxicity, side effects, water solubility, action duration, and distribution and enhance the peptides' druggability. Typically, the direct modification of natural amino acids is a practical and effective approach for promptly obtaining unnatural amino acids. However, selective functionalization of multiple C(sp3)-H bonds with comparable chemical reactivities in the peptide side chains remains a formidable challenge. Furthermore, chemical modifications aimed at highly reactive (nucleophilic and aromatic) groups on peptide side chains can interfere with the biological activity of peptides.In recent years, the rapid advancement of photoinduced radical reactions has made photoredox radical-radical cross-coupling a practical approach for constructing C(sp3)-C(sp3) bonds under mild conditions. Glycine, a naturally occurring amino acid and the fundamental skeleton of all α-amino acids, provides a basis for the alkylated modification of its own α-C(sp3)-H bond under mild conditions. This Account describes our recent research endeavors for systematically investigating the photocatalytic α-C(sp3)-H alkylation of glycine derivatives via radical-radical coupling between N-aryl glycinate-derived radicals and various alkyl radicals. In 2018, we disclosed the photoinduced Cu-catalyzed decarboxylative α-C(sp3)-H alkylation of glycine derivatives. Subsequently, we developed a catalyst-free method for alkylating glycine derivatives and glycine residues in peptides via electron donor-acceptor (EDA)-complex-promoted single electron transfer. Moreover, we developed a photoinduced method for the radical alkylation of N-aryl glycinate α-C(sp3)-H bonds using unactivated alkyl chlorides (iodides) under photocatalyst-free conditions. Notably, by building on racemic alkylations of glycine derivatives and glycine-residue-containing peptides, we recently stereoselectively alkylated the N-aryl glycinate α-C(sp3)-H bond using a dual-functional Cu catalyst generated in situ for synthesizing a series of unnatural chiral α-amino and C-glycoamino acids.We have developed a series of methods for synthesizing unnatural amino acids through the α-C(sp3)-H alkylation of glycine derivatives using photoredox-promoted radical coupling as a key strategy. These methods are efficient and versatile and can be used for the late-stage modification of peptides in various contexts. Our work builds on the fundamental importance of glycine as the basic scaffold of all α-amino acids and highlights the potential of radical-based chemistry for developing chemical transformations in peptide synthesis. These findings have broad implications for chemical biology and may open doors for discovering peptide drugs and developing therapeutics.

3.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928503

RESUMEN

Ischemic heart disease (IHD) remains a major global health concern, with ischemia-reperfusion injury exacerbating myocardial damage despite therapeutic interventions. In this study, we investigated the role of tropomyosin 3 (TPM3) in protecting cardiomyocytes against hypoxia-induced injury and oxidative stress. Using the AC16 and H9c2 cell lines, we established a chemical hypoxia model by treating cells with cobalt chloride (CoCl2) to simulate low-oxygen conditions. We found that CoCl2 treatment significantly upregulated the expression of hypoxia-inducible factor 1 alpha (HIF-1α) in cardiomyocytes, indicating the successful induction of hypoxia. Subsequent morphological and biochemical analyses revealed that hypoxia altered cardiomyocyte morphology disrupted the cytoskeleton, and caused cellular damage, accompanied by increased lactate dehydrogenase (LDH) release and malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) activity, indicative of oxidative stress. Lentivirus-mediated TPM3 overexpression attenuated hypoxia-induced morphological changes, cellular damage, and oxidative stress imbalance, while TPM3 knockdown exacerbated these effects. Furthermore, treatment with the HDAC1 inhibitor MGCD0103 partially reversed the exacerbation of hypoxia-induced injury caused by TPM3 knockdown. Protein-protein interaction (PPI) network and functional enrichment analysis suggested that TPM3 may modulate cardiac muscle development, contraction, and adrenergic signaling pathways. In conclusion, our findings highlight the therapeutic potential of TPM3 modulation in mitigating hypoxia-associated cardiac injury, suggesting a promising avenue for the treatment of ischemic heart disease and other hypoxia-related cardiac pathologies.


Asunto(s)
Hipoxia de la Célula , Citoesqueleto , Miocitos Cardíacos , Estrés Oxidativo , Tropomiosina , Animales , Ratas , Línea Celular , Cobalto/farmacología , Citoesqueleto/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Tropomiosina/metabolismo , Tropomiosina/genética
4.
Angew Chem Int Ed Engl ; : e202400494, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598042

RESUMEN

The photoredox electron donor-acceptor (EDA) complex-mediated radical coupling reaction has gained prominence in the field of organic synthesis, finding widespread application in two-component coupling reactions. However, EDA complex-promoted multi-component reactions are not well developed with only a limited number of examples have been reported. Herein, we report a photoinduced and EDA complex-promoted highly chemoselective three-component radical arylalkylation of [1.1.1]propellane, which allows the direct functionalization of C(sp3)-H with bicyclo[1.1.1]pentanes (BCP)-aryl groups under mild conditions. A variety of unnatural α-amino acids, featuring structurally diversified 1,3-disubstituted BCP moieties, were synthesized in a single-step process. Notably, leveraging the high tension release of [1.1.1]propellane, the highly unstable transient aryl radical undergoes rapid conversion into a relatively stable tertiary alkyl transient radical, and consequently, the competing side-reaction of two-component coupling was entirely suppressed. The strategic use of this transient radical conversion approach would be useful for the design of diverse EDA complex-mediated multi-component reactions. It is noteworthy that the highly chemoselective late-stage incorporation of the 1,3-disubstituted BCP pharmacophores into peptides was achieved both in liquid-phase and solid-phase reactions. This advancement is anticipated to have significant application potential in the future development of peptide drugs.

5.
Chemistry ; 29(21): e202203689, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-36586132

RESUMEN

Radical-based reactions usually exhibit excellent functional-group compatibilities due to their mild initiation conditions. Glycosyl radical involved C-glycosylation modifications are important strategies to achieve highly regio- and chemoselective constructions of C-glycosidic bonds or C-glycoside linkages of peptides and proteins. In this Concept, we cover recent developments in glycosyl radical-based synthesis of unnatural amino acids and late-stage modification of peptides and proteins, and provide a preliminary outlook on the possible development of this direction in the future.


Asunto(s)
Aminoácidos , Glicopéptidos , Glicopéptidos/química , Aminoácidos/química , Péptidos , Glicosilación
6.
Angew Chem Int Ed Engl ; 61(24): e202200822, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35315966

RESUMEN

The glycosylative modification of peptides could improve the pharmacological properties of peptide drugs and deliver them efficiently to the target sites. Compared with O-/N-glycosides, C-glycosides exhibit more metabolic stability. We here disclose the first example of visible-light-promoted and Cu-catalyzed stereoselective C-glycosylation. The mild reaction conditions are compatible with various carbohydrate substrates, as demonstrated with a series of monosaccharides and a disaccharide, and are amenable to the synthesis of a wide variety of C-glycoamino acids and C-glycopeptidomimetics with good yields and excellent stereoselectivities. The dual-functional photocatalyst formed in situ via coordination of the glycine derivative and the chiral phosphine Cu complex could not only catalyze the photoredox process but also control the stereoselectivity of the glycosylation reaction.


Asunto(s)
Aminoácidos , Glicopéptidos , Aminoácidos/química , Glicopéptidos/química , Glicósidos/química , Glicosilación , Péptidos/química
7.
J Am Chem Soc ; 143(32): 12777-12783, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34351761

RESUMEN

The asymmetric functionalization of C-H is one of the most attractive strategies in asymmetric synthesis. In the past decades, catalytic enantioselective C(sp3)-H functionalization has been intensively studied and successfully applied in various asymmetric bond formations, whereas asymmetric C(sp3)-H alkylation was not well developed. Photoredox catalysis has recently emerged as an efficient way to synthesize organic compounds under mild conditions. Despite many photoinduced stereoselective reactions that have been achieved, the related enantioselective C(sp3)-C(sp3) coupling is challenging, especially of the photocatalytic asymmetric C(sp3)-H radical alkylation. Here, we report a visible light induced Cu catalyzed asymmetric sp3 C-H alkylation, which is effective for coupling with unbiased primary, secondary, and tertiary alkyl fragments in high enantioselectivities. This reaction would provide a new approach for the synthesis of important molecules such as unnatural α-amino acids and late-stage functionalization of bioactive compounds, and will be useful for modern peptide synthesis and drug discovery.

8.
Amino Acids ; 53(1): 23-32, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33236256

RESUMEN

Protonectin was a typical amphiphilic antimicrobial peptide with potent antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, when its eleventh amino acid in the sequence was substituted by phenylalanine, the analog named phe-Prt showed potent antimicrobial activity against Gram-positive bacteria, but no antimicrobial activity against Gram-negative bacteria, indicating a significant selectivity between Gram-positive bacteria and Gram-negative bacteria. However, when Gram-negative bacteria were incubated with EDTA, the bacteria were susceptible to phe-Prt. Next, the binding effect of phe-Prt with LPS was determined. Our result showed that LPS could hamper the bactericidal activity of phe-Prt against Gram-positive bacteria. The result of zeta potential assay further confirmed the binding effect of phe-Prt with LPS for it could neutralize the surface charge of E. coli and LPS. Then, the effect of phe-Prt on the integrity of outer membrane of Gram-negative bacteria was determined. Our results showed that phe-Prt had a much weaker disturbance to the outer membrane of Gram-negative bacteria than the parent peptide protonectin. In summary, the introduction of L-phenylalanine into the sequence of antimicrobial peptide protonectin made phe-Prt show significant selectivity against Gram-positive bacteria, which could partly be attributed to the delay effect of LPS for phe-Prt to access to cell membrane. Although further study is still needed to clarify the exact mechanism of selectivity, the present study provided a strategy to develop antimicrobial peptides with selectivity toward Gram-positive and Gram-negative bacteria.


Asunto(s)
Antibacterianos/farmacología , Bacterias Grampositivas/efectos de los fármacos , Oligopéptidos/química , Fenilalanina/química , Proteínas Citotóxicas Formadoras de Poros/farmacología , Venenos de Avispas/química , Antibacterianos/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Dicroismo Circular , Bacterias Gramnegativas/efectos de los fármacos , Lipopolisacáridos/metabolismo , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Oligopéptidos/farmacología , Proteínas Citotóxicas Formadoras de Poros/química , Venenos de Avispas/farmacología
9.
Bioorg Med Chem ; 46: 116344, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34438337

RESUMEN

Based on a new pyrazole sulfonate synthetic method, a novel class of molecules with a basic structure of pyrazole N-aryl sulfonate have been designed and synthesized. The interest in conducting intensive research stems from quite evident anti-inflammatory effects exhibited by the compounds in preliminary animal experiments. A series of compounds were synthesized by different substitutions of the R1, R2, and R3 groups. Within the series, 4-iodophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and phenyl 5-methyl-3-(4-(trifluoromethyl) phenyl)-1H-pyrazole-1-sulfonate exhibited excellent anti-inflammatory activity (% inhibition of auricular edemas = 27.0 and 35.9, respectively); the in vivo analgesic activity of phenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and 2-chlorophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate was confirmed to be effective (inhibition ratio of writhing = 50.7% and 48.5% separately), and compounds phenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate , 4-iodophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and 2-chlorophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate were identified as selective COX-2 inhibitors (SI = 455, 10,497 and >189 severally). In Acute Oral Toxicity assays conducted in vivo, the lethal dose 50 (LD50) of 4-iodophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and 2-chlorophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate to mice was >2000 mg/kg BW.


Asunto(s)
Arilsulfonatos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Descubrimiento de Drogas , Animales , Arilsulfonatos/síntesis química , Arilsulfonatos/química , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química , Relación Dosis-Respuesta a Droga , Humanos , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Ratones , Estructura Molecular , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Células RAW 264.7 , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
10.
Acta Biochim Biophys Sin (Shanghai) ; 52(6): 603-611, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32369105

RESUMEN

Nowadays, drug-resistant microbes are becoming a serious clinical problem threatening people's health and life. Antimicrobial peptides (AMPs) are believed to be potential alternatives of conventional antibiotics to combat the threat of drug-resistant microbes. However, the susceptibility of AMPs toward proteases is one of the major problems limiting their clinical use. In the present study, we reported the effect of Cu2+ on the bioactivity of AMP HMPI. We found that the addition of Cu2+ could improve the protease resistance of AMP HMPI without affecting its bioactivity. Notably, after the binding of Cu2+ with HMPI, the hemolytic activity of HMPI was greatly decreased. In addition, our results also demonstrated that the addition of Cu2+ increased the production of reactive oxygen species in the fungal cells, which may be a supplement for the antifungal activity of HMPI. In conclusion, the introduction of Cu2+ may provide an inorganic strategy to improve the stability and decrease the hemolytic activity of AMP HMPI, while maintaining its antifungal activity.


Asunto(s)
Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Candida/crecimiento & desarrollo , Farmacorresistencia Fúngica/efectos de los fármacos , Hemólisis/efectos de los fármacos , Tripsina/farmacología , Cobre , Humanos
11.
Angew Chem Int Ed Engl ; 59(19): 7461-7466, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32078758

RESUMEN

Disclosed herein is the visible-light-promoted deaminative C(sp3 )-H alkylation of glycine and peptides using Katritzky salts as electrophiles. Simple reaction conditions and excellent functional-group tolerance provide a general strategy for the efficient preparation of unnatural α-amino acids and precise modification of peptides with unnatural α-amino-acid residues. Mechanistic studies suggest that visible-light-promoted intermolecular charge transfer within a glycine-Katritzky salt electron donor-acceptor (EDA) complex induces a single-electron transfer process without the assistance of photocatalyst.

12.
Angew Chem Int Ed Engl ; 57(17): 4747-4751, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29476596

RESUMEN

The first visible-light-promoted dearomative fluoroalkylation of ß-naphthols was realized without the assistance of any transition-metal catalysts or external photosensitizers. Inexpensive fluoroalkyl iodides were directly used as efficient fluoroalkylation reagents under very mild reaction conditions. The scope of this process was found to be general and broad, and both trifluoromethyl and perfluoroalkyl groups (-C4 F9 , -C6 F13 , and -C8 F17 ) were installed in excellent yields. Preliminary mechanistic studies suggest that visible-light-promoted intermolecular charge transfer within the naphtholate-fluoroalkyl iodide electron donor-acceptor (EDA) complex induces a single electron transfer in the absence of photocatalysts.

13.
Angew Chem Int Ed Engl ; 57(48): 15841-15846, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30296349

RESUMEN

Despite a well-developed and growing body of work in Cu catalysis, the potential of Cu to serve as a photocatalyst remains underexplored. Reported herein is the first example of visible-light-induced Cu-catalyzed decarboxylative C(sp3 )-H alkylation of glycine for preparing α-alkylated unnatural α-amino acids. It merits mentioning that the mild conditions and the good functional-group tolerance allow the modification of peptides using this method. The mechanistic studies revealed that a radical-radical coupling pathway is involved in the reaction.


Asunto(s)
Aminoácidos/síntesis química , Cobre/química , Glicina/química , Luz , Péptidos/química , Alquilación , Aminoácidos/química , Catálisis , Descarboxilación , Estructura Molecular
14.
J Org Chem ; 81(6): 2639-45, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26934998

RESUMEN

The first example of decarboxylative difluoroacetamidation of α,ß-unsaturated carboxylic acids by using difluoromethyl-substituted carbonyl compounds was disclosed. The procedure, which was mediated by low-cost and benign CuSO4, furnished a broad range of difluorinated alkenes in remarkable yields with only the E configuration in most of the cases. Moreover, the product could be smoothly transformed to the corresponding difluorofunctionalized ester and alcohol in high yields.

15.
J Org Chem ; 81(13): 5782-8, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27333453

RESUMEN

A AgOAc catalyzed difunctionalization of activated alkenes through a difluoroamidic radical addition to afford difluoroamidated 3,3-disubstituted oxindoles has been developed. Various functional groups were well tolerated. Moreover, the product could be efficiently derived to the corresponding difluorofunctionalized alcohol, ketone, and ester in high yields. The mechanistic studies revealed that a radical pathway was involved in the transformation.

16.
J Org Chem ; 80(13): 6890-6, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26083196

RESUMEN

A class of o-(trimethylsilyl)aryl fluorosulfates was synthesized by a concise method and successfully used as aryne precursors for the first time. Different trapping agents such as azides, furans, and acyl acetoacetates could successfully react with the aryne precursors under mild conditions with good to excellent yields.


Asunto(s)
Acetoacetatos/química , Azidas/química , Compuestos de Trimetilsililo/química , Compuestos de Trimetilsililo/síntesis química , Estructura Molecular , Estereoisomerismo
17.
Chemistry ; 20(12): 3439-45, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24677229

RESUMEN

The functionalization of internal olefins has been a challenging task in organic synthesis. Efficient CuII-catalyzed trifluoromethylation of internal olefins, that is, α-oxoketene dithioacetals, has been achieved by using Cu(OH)2 as a catalyst and TMSCF3 as a trifluoromethylating reagent. The push-pull effect from the polarized olefin substrates facilitates the internal olefinic C-H trifluoromethylation. Cyclic and acyclic dithioalkyl α-oxoketene acetals were used as the substrates and various substituents were tolerated. The internal olefinic C-H bond cleavage was not involved in the rate-determining step, and a mechanism that involves radicals is proposed based on a TEMPO-quenching experiment of the trifluoromethylation reaction. Further derivatization of the resultant CF3 olefins led to multifunctionalized tetrasubstituted CF3 olefins and trifluoromethylated N-heterocycles.


Asunto(s)
Alquenos/química , Cobre/química , Compuestos Heterocíclicos/química , Hidrocarburos Fluorados/química , Hidróxidos/química , Catálisis , Enlace de Hidrógeno , Metilación , Estructura Molecular
18.
Org Lett ; 26(9): 1775-1779, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38408019

RESUMEN

Herein, BF3·Et2O-promoted O-insertion/spirocyclization/fluorination/ring-expansion of unsaturated amides to synthesis of spiro[benzo[b]-[1,4]dioxepine-3,5'-oxazole] skeletons in the presence of natural light and O2 (3Σg-) was reported. Air was the oxygen source of the 1O2-generation and O-insertion reaction under metal-free and mild conditions. BF3·Et2O played multiple roles, such as Lewis acid, activating reagent, and fluorine source in the reported cascade. A mechanism involving 1O2 generation/activation of double bond/O-insertion/spirocyclization/fluorination/ring expansion was supposed.

19.
Chem Sci ; 15(28): 11099-11107, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39027288

RESUMEN

Late-stage modification of peptides could potentially endow peptides with significant bioactivity and physicochemical properties, and thereby provide novel opportunities for peptide pharmaceutical studies. Since tryptophan (Trp) bears a unique indole ring residue and plays various critical functional roles in peptides, the modification methods for tryptophan were preliminarily developed with considerable progress via transition-metal mediated C-H activation. Herein, we report an unprecedented tertiary amine catalyzed peptide allylation via the SN2'-SN2' pathway between the N1 position of the indole ring of Trp and Morita-Baylis-Hillman (MBH) carbonates. Using this method that proceeds under mild conditions, we demonstrated an extremely broad scope of Trp-containing peptides and MBH carbonates to prepare a series of peptide conjugates and cyclic peptides. The reaction is amenable to either solid-phase (on resin) or solution-phase conditions. In addition, the modified peptides can be further conjugated with other biomolecules at Trp, providing a new handle for bioconjugation.

20.
Front Mol Biosci ; 10: 1109403, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033446

RESUMEN

Background: GGPS1(geranylgeranyl diphosphate synthase 1) is a member of the prenyltransferase family. Abnormal expression of GGPS1 can disrupt the balance between protein farnesylation and geranylgeranylation, thereby affecting a variety of cellular physiologic and pathological processes. However, it is still unknown how this gene could contribute to the prognosis of oral squamous cell carcinoma (OSCC). This study aimed to explore the prognostic role of GGPS1 in OSCC and its relationship with clinical features. Methods: The RNA-seq data and clinical data were obtained from TCGA. The survival analyses, Cox regression analyses, ROC curves, nomograms, calibration curves, and gene function enrichments were established by R software. Results: The results showed that the high expression of GGPS1 in OSCC is related to poor prognosis. At the same time, multivariate Cox regression analyses showed that GGPS1 could be an independent prognostic biomarker, and its gene expression level is closely related to the histological stage of cancer. GGPS1 may promote tumorigenesis because of its metabolic function. Conclusion: This study came to a conclusion that GGPS1, whose high expression has a significantly unfavorable meaning toward the prognosis of OSCC, can act as a novel independent biomarker for OSCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA