Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.969
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(1): e2310727120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38150499

RESUMEN

Intrinsically disordered regions (IDR) and short linear motifs (SLiMs) play pivotal roles in the intricate signaling networks governed by phosphatases and kinases. B56δ (encoded by PPP2R5D) is a regulatory subunit of protein phosphatase 2A (PP2A) with long IDRs that harbor a substrate-mimicking SLiM and multiple phosphorylation sites. De novo missense mutations in PPP2R5D cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Our single-particle cryo-EM structures of the PP2A-B56δ holoenzyme reveal that the long, disordered arms at the B56δ termini fold against each other and the holoenzyme core. This architecture suppresses both the phosphatase active site and the substrate-binding protein groove, thereby stabilizing the enzyme in a closed latent form with dual autoinhibition. The resulting interface spans over 190 Šand harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is coupled to an allosteric network responsive to phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations increase the holoenzyme activity and perturb the phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the normal variant.


Asunto(s)
Proteína Fosfatasa 2 , Proteína Fosfatasa 2/metabolismo , Jordania , Fosforilación , Mutación , Holoenzimas/genética , Holoenzimas/metabolismo
2.
J Biol Chem ; : 107920, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39454961

RESUMEN

Gram-positive bacteria utilize a Fatty Acid Kinase (FAK) complex to harvest fatty acids from the environment. This complex consists of the fatty acid kinase, FakA, and an acyl carrier protein, FakB, and is known to impact virulence and disease outcomes. Despite some recent studies, there remains many outstanding questions as to the enzymatic mechanism and structure of FAK . To better address this gap in knowledge, we used a combination of modeling, biochemical, and cell-based approaches to build on prior proposed models and identify critical details of FAK activity. Using bio-layer interferometry, we demonstrated nanomolar affinity between FakA and FakB that also indicates that FakA is dimer when binding FakB. Additionally, targeted mutagenesis of the FakA Middle domain demonstrates it possesses a metal binding pocket that is critical for FakA dimer stability and FAK function in vitro and in vivo. Lastly, we solved structures of the apo and ligand-bound FakA kinase domain to capture the molecular changes in the protein following ATP binding and hydrolysis. Together, these data provide critical insight into the structure and function of the FAK complex which is essential for understanding its mechanism.

3.
EMBO J ; 40(11): e105320, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33591591

RESUMEN

Incorporation of microbiome data has recently become important for prevention, diagnosis, and treatment of colorectal cancer, and several species of bacteria were shown to be associated with carcinogenesis. However, the role of commensal fungi in colon cancer remains poorly understood. Here, we report that mice lacking the c-type lectin Dectin-3 (Dectin-3-/- ) show increased tumorigenesis and Candida albicans burden upon chemical induction. Elevated C. albicans load triggered glycolysis in macrophages and interleukin-7 (IL-7) secretion. IL-7 induced IL-22 production in RORγt+ (group 3) innate lymphoid cells (ILC3s) via aryl hydrocarbon receptor and STAT3. Consistently, IL-22 frequency in tumor tissues of colon cancer patients positively correlated with fungal burden, indicating the relevance of this regulatory axis in human disease. These results establish a C. albicans-driven crosstalk between macrophages and innate lymphoid cells in the intestine and expand our understanding on how commensal mycobiota regulate host immunity and promote tumorigenesis.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Glucólisis , Interleucinas/metabolismo , Linfocitos/metabolismo , Macrófagos/metabolismo , Micobioma , Animales , Candida albicans/patogenicidad , Células Cultivadas , Neoplasias Colorrectales/microbiología , Humanos , Interleucina-7/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ratones , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Factor de Transcripción STAT3/metabolismo , Interleucina-22
4.
Annu Rev Biomed Eng ; 26(1): 141-167, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38346277

RESUMEN

Histotripsy is a relatively new therapeutic ultrasound technology to mechanically liquefy tissue into subcellular debris using high-amplitude focused ultrasound pulses. In contrast to conventional high-intensity focused ultrasound thermal therapy, histotripsy has specific clinical advantages: the capacity for real-time monitoring using ultrasound imaging, diminished heat sink effects resulting in lesions with sharp margins, effective removal of the treated tissue, a tissue-selective feature to preserve crucial structures, and immunostimulation. The technology is being evaluated in small and large animal models for treating cancer, thrombosis, hematomas, abscesses, and biofilms; enhancing tumor-specific immune response; and neurological applications. Histotripsy has been recently approved by the US Food and Drug Administration to treat liver tumors, with clinical trials undertaken for benign prostatic hyperplasia and renal tumors. This review outlines the physical principles of various types of histotripsy; presents major parameters of the technology and corresponding hardware and software, imaging methods, and bioeffects; and discusses the most promising preclinical and clinical applications.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Humanos , Animales , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Masculino , Neoplasias/terapia , Neoplasias/diagnóstico por imagen , Diseño de Equipo , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/diagnóstico por imagen
5.
Plant Physiol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39197038

RESUMEN

Genetic variation within a species can result in allelic expression for natural selection or breeding efforts. Here, we identified an iron (Fe) deficiency-inducible gene, AP2-like ABA repressor 1 (MdABR1), in apple (Malus domestica). MdABR1 exhibited differential expression at the allelic level (MdABR131A and MdABR131G) in response to Fe deficiency. The W-box insertion in the promoter of MdABR131A is essential for its induced expression and its positive role under Fe deficiency stress. MdABR1 binds to the promoter of basic-helix-loop-helix 105 (MdbHLH105), participating in the Fe-deficiency response, and activates its transcription. MdABR131A exerts a more pronounced transcriptional activation effect on MdbHLH105. Suppression of MdABR1 expression leads to reduced rhizosphere acidification in apple, and MdABR131A exhibits allelic expression under Fe-deficiency stress, which is substantially upregulated and then activates the expression of MdbHLH105, promoting the accumulation of plasma membrane proton ATPase 8 (MdAHA8) transcripts in response to proton extrusion, thereby promoting rhizosphere acidification. Therefore, variation in the ABR1 alleles results in variable gene expression and enables apple plants to exhibit a wider tolerance capability and Fe deficiency response. These findings also shed light on the molecular mechanisms of allele-specific expression in woody plants.

6.
J Immunol ; 211(6): 1006-1019, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37548504

RESUMEN

Liver X receptors (LXRs) are nuclear receptors involved in metabolism and the immune response. Different from mammalian LXRs, which include two isoforms, LXRα and LXRß, only a single LXRα gene exists in the piscine genomes. Although a study has suggested that piscine LXR inhibits intracellular bacterial survival, the functions of piscine LXRα in viral infection are unknown. In this study, we show that overexpression of LXRα from grass carp (Ctenopharyngodon idellus), which is named as gcLXRα, increases host susceptibility to grass carp reovirus (GCRV) infection, whereas gcLXRα knockdown in CIK (C. idellus kidney) cells inhibits GCRV infection. Consistent with these functional studies, gcLXRα knockdown promotes the transcription of antiviral genes involved in the RIG-I-like receptor (RLR) antiviral signaling pathway, including IFN regulatory factor (IRF3) and the type I IFN IFN1. Further results show that gcLXRα knockdown induces the expression of CREB-binding protein (CBP), a transcriptional coactivator. In the knockdown of CBP, the inhibitory effect of gcLXRα knockdown in limiting GCRV infection is completely abolished. gcLXRα also interacts with IRF3 and CBP, which impairs the formation of the IRF3/CBP transcription complex. Moreover, gcLXRα heterodimerizes with RXRg, which cooperatively impair the transcription of the RLR antiviral signaling pathway and promote GCRV infection. Taken together, to our knowledge, our findings provide new insight into the functional correlation between nuclear receptor LXRα and the RLR antiviral signaling pathway, and they demonstrate that gcLXRα can impair the RLR antiviral signaling pathway and the production of type I IFN via forming gcLXRα/RXRg complexes and attenuating IRF3/CBP complexes.


Asunto(s)
Carpas , Enfermedades de los Peces , Interferón Tipo I , Infecciones por Reoviridae , Reoviridae , Animales , Humanos , Antivirales/farmacología , Receptores X del Hígado/metabolismo , Carpas/metabolismo , Proteína de Unión a CREB/metabolismo , Transducción de Señal , Interferón Tipo I/metabolismo , Proteínas de Peces/genética , Mamíferos/metabolismo , Factor 3 Regulador del Interferón/metabolismo
7.
Exp Cell Res ; 435(2): 113949, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266865

RESUMEN

HECW1 belongs to ubiquitin ligase (E3) HECT family, and is found to be involved in tumorigenesis and tumor progression. However, the function of HECW1 in cervical cancer (CC) remains unknown. Clinical analysis showed that HECW1 is significantly decreased in CC tumor tissues. Ectopic expression of HECW1 suppressed cell growth, promoting cell cycle arrest and apoptosis in CC cells, while downregulation of HECW1 reversed these trends, impeded proliferation and accelerated cell cycle progression of CC cells. Overexpressing of HECW1 reduced mitochondrial membrane potential and the protein expression of voltage-dependent anion channel 1 (VDAC1). In addition, upregulation of HECW1 inhibited nuclear ß-catenin accumulation, downregulated ß-catenin/TCF/LEF-mediated transcriptional activity and the expression of downstream gene c-Myc, whereas inhibition of HECW1 received opposite results. Further results confirmed HECW1 affects the protein expression of dishevelled-1 (DVL1), a potent activator of Wnt/ß-catenin, and inhibition of HECW1 inhibited the ubiquitination of DVL1, upregulating its expression. Inhibition of DVL1 restrained the promotion effect of HECW1 suppression on cell proliferation. In vivo experiments also verified that HECW1 suppression promoted the tumor formation of CC cells. Summary, we demonstrated that HECW1 inhibits CC cell proliferation and tumor formation by downregulating DVL1 induced Wnt/ß-catenin signaling pathway activation.


Asunto(s)
Neoplasias del Cuello Uterino , Vía de Señalización Wnt , Femenino , Humanos , Vía de Señalización Wnt/genética , Línea Celular Tumoral , Neoplasias del Cuello Uterino/patología , beta Catenina/genética , beta Catenina/metabolismo , Ubiquitinación , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Nucleic Acids Res ; 51(22): 12031-12042, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37953355

RESUMEN

Molnupiravir (EIDD-2801) is an antiviral that received approval for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. Treatment of bacteria or cell lines with the active form of molnupiravir, ß-d-N4-hydroxycytidine (NHC, or EIDD-1931), induces mutations in DNA. Yet these results contrast in vivo genotoxicity studies conducted during registration of the drug. Using a CRISPR screen, we found that inactivating the pyrimidine salvage pathway component uridine-cytidine kinase 2 (Uck2) renders cells more tolerant of NHC. Short-term exposure to NHC increased the mutation rate in a mouse myeloid cell line, with most mutations being T:A to C:G transitions. Inactivating Uck2 impaired the mutagenic activity of NHC, whereas over-expression of Uck2 enhanced mutagenesis. UCK2 is upregulated in many cancers and cell lines. Our results suggest differences in ribonucleoside metabolism contribute to the variable mutagenicity of NHC observed in cancer cell lines and primary tissues.


Asunto(s)
Citidina , Mutágenos , Uridina Quinasa , Animales , Ratones , Antivirales/toxicidad , Citidina/análogos & derivados , Citidina/farmacología , Mutagénesis , Mutágenos/farmacología , ARN Viral , Uridina Quinasa/genética , Uridina Quinasa/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(34): e2203346119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969757

RESUMEN

Plastic waste represents one of the most urgent environmental challenges facing humankind. Upcycling has been proposed to solve the low profitability and high market sensitivity of known recycling methods. Existing upcycling methods operate under energy-intense conditions and use precious-metal catalysts, but produce low-value oligomers, monomers, and common aromatics. Herein, we report a tandem degradation-upcycling strategy to exploit high-value chemicals from polystyrene (PS) waste with high selectivity. We first degrade PS waste to aromatics using ultraviolet (UV) light and then valorize the intermediate to diphenylmethane. Low-cost AlCl3 catalyzes both the reactions of degradation and upcycling at ambient temperatures under atmospheric pressure. The degraded intermediates can advantageously serve as solvents for processing the solid plastic wastes, forming a self-sustainable circuitry. The low-value-input and high-value-output approach is thus substantially more sustainable and economically viable than conventional thermal processes, which operate at high-temperature, high-pressure conditions and use precious-metal catalysts, but produce low-value oligomers, monomers, and common aromatics. The cascade strategy is resilient to impurities from plastic waste streams and is generalizable to other high-value chemicals (e.g., benzophenone, 1,2-diphenylethane, and 4-phenyl-4-oxo butyric acid). The upcycling to diphenylmethane was tested at 1-kg laboratory scale and attested by industrial-scale techno-economic analysis, demonstrating sustainability and economic viability without government subsidies or tax credits.


Asunto(s)
Poliestirenos , Reciclaje , Eliminación de Residuos , Plásticos/síntesis química , Poliestirenos/química , Eliminación de Residuos/métodos , Solventes
10.
PLoS Genet ; 18(7): e1010302, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35853002

RESUMEN

Perturbation of huntingtin (HTT)'s physiological function is one postulated pathogenic factor in Huntington's disease (HD). However, little is known how HTT is regulated in vivo. In a proteomic study, we isolated a novel ~40kDa protein as a strong binding partner of Drosophila HTT and demonstrated it was the functional ortholog of HAP40, an HTT associated protein shown recently to modulate HTT's conformation but with unclear physiological and pathologic roles. We showed that in both flies and human cells, HAP40 maintained conserved physical and functional interactions with HTT. Additionally, loss of HAP40 resulted in similar phenotypes as HTT knockout. More strikingly, HAP40 strongly affected HTT's stability, as depletion of HAP40 significantly reduced the levels of endogenous HTT protein while HAP40 overexpression markedly extended its half-life. Conversely, in the absence of HTT, the majority of HAP40 protein were degraded, likely through the proteasome. Further, the affinity between HTT and HAP40 was not significantly affected by polyglutamine expansion in HTT, and contrary to an early report, there were no abnormal accumulations of endogenous HAP40 protein in HD cells from mouse HD models or human patients. Lastly, when tested in Drosophila models of HD, HAP40 partially modulated the neurodegeneration induced by full-length mutant HTT while showed no apparent effect on the toxicity of mutant HTT exon 1 fragment. Together, our study uncovers a conserved mechanism governing the stability and in vivo functions of HTT and demonstrates that HAP40 is a central and positive regulator of endogenous HTT. Further, our results support that mutant HTT is toxic regardless of the presence of its partner HAP40, and implicate HAP40 as a potential modulator of HD pathogenesis through its multiplex effect on HTT's function, stability and the potency of mutant HTT's toxicity.


Asunto(s)
Proteína Huntingtina , Enfermedad de Huntington , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares , Animales , Modelos Animales de Enfermedad , Drosophila/genética , Drosophila/metabolismo , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Proteómica
11.
Nano Lett ; 24(14): 4256-4264, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557048

RESUMEN

Biological materials exhibit fascinating mechanical properties for intricate interactions at multiple interfaces to combine superb toughness with wondrous strength and stiffness. Recently, strong interlayer entanglement has emerged to replicate the powerful dissipation of natural proteins and alleviate the conflict between strength and toughness. However, designing intricate interactions in a strong entanglement network needs to be further explored. Here, we modulate interlayer entanglement by introducing multiple interactions, including hydrogen and ionic bonding, and achieve ultrahigh mechanical performance of graphene-based nacre fibers. Two essential modulating trends are directed. One is modulating dynamic hydrogen bonding to improve the strength and toughness up to 1.58 GPa and 52 MJ/m3, simultaneously. The other is tailoring ionic coordinating bonding to raise the strength and stiffness, reaching 2.3 and 253 GPa. Modulating various interactions within robust entanglement provides an effective approach to extend performance limits of bioinspired nacre and optimize multiscale interfaces in diverse composites.

12.
Breast Cancer Res ; 26(1): 119, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054536

RESUMEN

BACKGROUND: Breast cancer is the most common cancer in women diagnosed in the U.S. and worldwide. Obesity increases breast cancer risk without clear underlying molecular mechanisms. Our studies demonstrate that circulating adipose fatty acid binding protein (A-FABP, or FABP4) links obesity-induced dysregulated lipid metabolism and breast cancer risk, thus potentially offering a new target for breast cancer treatment. METHODS: We immunized FABP4 knockout mice with recombinant human FABP4 and screened hybridoma clones with specific binding to FABP4. The potential effects of antibodies on breast cancer cells in vitro were evaluated using migration, invasion, and limiting dilution assays. Tumor progression in vivo was evaluated in various types of tumorigenesis models including C57BL/6 mice, Balb/c mice, and SCID mice. The phenotype and function of immune cells in tumor microenvironment were characterized with multi-color flow cytometry. Tumor stemness was detected by ALDH assays. To characterize antigen-antibody binding capacity, we determined the dissociation constant of selected anti-FABP4 antibodies via surface plasmon resonance. Further analyses in tumor tissue were performed using 10X Genomics Visium spatial single cell technology. RESULTS: Herein, we report the generation of humanized monoclonal antibodies blocking FABP4 activity for breast cancer treatment in mouse models. One clone, named 12G2, which significantly reduced circulating levels of FABP4 and inhibited mammary tumor growth, was selected for further characterization. After confirming the therapeutic efficacy of the chimeric 12G2 monoclonal antibody consisting of mouse variable regions and human IgG1 constant regions, 16 humanized 12G2 monoclonal antibody variants were generated by grafting its complementary determining regions to selected human germline sequences. Humanized V9 monoclonal antibody showed consistent results in inhibiting mammary tumor growth and metastasis by affecting tumor cell mitochondrial metabolism. CONCLUSIONS: Our current evidence suggests that targeting FABP4 with humanized monoclonal antibodies may represent a novel strategy for the treatment of breast cancer and possibly other obesity- associated diseases.


Asunto(s)
Neoplasias de la Mama , Proteínas de Unión a Ácidos Grasos , Animales , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/inmunología , Humanos , Femenino , Ratones , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Ratones Noqueados , Ensayos Antitumor por Modelo de Xenoinjerto , Microambiente Tumoral/inmunología , Modelos Animales de Enfermedad , Ratones SCID
13.
Radiology ; 312(3): e233051, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39225612

RESUMEN

Background Histotripsy is a nonthermal, nonionizing, noninvasive, focused US technique that relies on cavitation for mechanical tissue breakdown at the focal point. Preclinical data have shown its safety and technical success in the ablation of liver tumors. Purpose To evaluate the safety and technical success of histotripsy in destroying primary or metastatic liver tumors. Materials and Methods The parallel United States and European Union and England #HOPE4LIVER trials were prospective, multicenter, single-arm studies. Eligible patients were recruited at 14 sites in Europe and the United States from January 2021 to July 2022. Up to three tumors smaller than 3 cm in size could be treated. CT or MRI and clinic visits were performed at 1 week or less preprocedure, at index-procedure, 36 hours or less postprocedure, and 30 days postprocedure. There were co-primary end points of technical success of tumor treatment and absence of procedure-related major complications within 30 days, with performance goals of greater than 70% and less than 25%, respectively. A two-sided 95% Wilson score CI was derived for each end point. Results Forty-four participants (21 from the United States, 23 from the European Union or England; 22 female participants, 22 male participants; mean age, 64 years ± 12 [SD]) with 49 tumors were enrolled and treated. Eighteen participants (41%) had hepatocellular carcinoma and 26 (59%) had non-hepatocellular carcinoma liver metastases. The maximum pretreatment tumor diameter was 1.5 cm ± 0.6 and the maximum post-histotripsy treatment zone diameter was 3.6 cm ± 1.4. Technical success was observed in 42 of 44 treated tumors (95%; 95% CI: 84, 100) and procedure-related major complications were reported in three of 44 participants (7%; 95% CI: 2, 18), both meeting the performance goal. Conclusion The #HOPE4LIVER trials met the co-primary end-point performance goals for technical success and the absence of procedure-related major complications, supporting early clinical adoption. Clinical trial registration nos. NCT04572633, NCT04573881 Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Nezami and Georgiades in this issue.


Asunto(s)
Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/cirugía , Femenino , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Anciano , Tomografía Computarizada por Rayos X , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Estados Unidos , Resultado del Tratamiento , Imagen por Resonancia Magnética/métodos , Hígado/diagnóstico por imagen , Hígado/patología , Hígado/cirugía , Europa (Continente)
14.
Small ; 20(34): e2400415, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38698600

RESUMEN

Highly flexible and superelastic aerogels at large deformation have become urgent mechanical demands in practical uses, but both properties are usually exclusive. Here a trans-scale porosity design is proposed in graphene nanofibrous aerogels (GNFAs) to break the trade-off between high flexibility and superelasticity. The resulting GNFAs can completely recover after 1000 fatigue cycles at 60% folding strain, and notably maintain excellent structural integrity after 10000 cycles at 90% compressive strain, outperforming most of the reported aerogels. The mechanical robustness is demonstrated to be derived from the trans-scale porous structure, which is composed of hyperbolic micropores and porous nanofibers to enable the large elastic deformation capability. It is further revealed that flexible and superelastic GNFAs exhibit high sensitivity and ultrastability as an electrical sensors to detect tension and flexion deformation. As proof, The GNFA sensor is implemented onto a human finger and achieves the intelligent recognition of sign language with high accuracy by multi-layer artificial neural network. This study proposes a highly flexible and elastic graphene aerogel for wearable human-machine interfaces in sensor technology.

15.
Small ; 20(21): e2308430, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38126626

RESUMEN

Graphene nanoribbons (GNRs) are promising in nanoelectronics for their quasi-1D structures with tunable bandgaps. The methods for controllable fabrication of high-quality GNRs are still limited. Here a way to generate sub-5-nm GNRs by annealing single-walled carbon nanotubes (SWCNTs) on Cu(111) is demonstrated. The structural evolution process is characterized by low-temperature scanning tunneling microscopy. Substrate-dependent measurements on Au(111) and Ru(0001) reveal that the intermediate strong SWCNT-surface interaction plays a pivotal role in the formation of GNRs.

16.
J Neurosci Res ; 102(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284835

RESUMEN

Bone metastasis pain (BMP) is a severe chronic pain condition. Our previous studies on BMP revealed functional brain abnormalities. However, the potential effect of BMP on brain structure and function, especially gray matter volume (GMV) and related functional networks, have not yet been clearly illustrated. Voxel-based morphometry and functional connectivity (FC) analysis methods were used to investigate GMV and intrinsic FC differences in 45 right-handed lung cancer patients with BMP(+), 37 lung cancer patients without BMP(-), and 45 healthy controls (HCs). Correlation analysis was performed thereafter with all clinical variables by Pearson correlation. Compared to HCs, BMP(+) group exhibited decreased GMV in medial frontal gyrus (MFG) and right middle temporal gyrus (MTG). Compared with BMP(-) group, BMP(+) group exhibited reduced GMV in cerebelum_6_L and left lingual gyrus. However, no regions with significant GMV differences were found between BMP(-) and HCs groups. Receiver operating characteristic analysis indicated the potential classification power of these aberrant regions. Correlation analysis revealed that GMV in the right MTG was positively associated with anxiety in BMP(+) group. Further FC analysis demonstrated enhanced interactions between MFG/right MTG and cerebellum in BMP(+) patients compared with HCs. These results showed that BMP was closely associated with cerebral alterations, which may induce the impairment of pain moderation circuit, deficits in cognitive function, dysfunction of emotional control, and sensorimotor processing. These findings may provide a fresh perspective and further neuroimaging evidence for the possible mechanisms of BMP. Furthermore, the role of the cerebellum in pain processing needs to be further investigated.


Asunto(s)
Dolor Crónico , Neoplasias Pulmonares , Humanos , Sustancia Gris/diagnóstico por imagen , Neoplasias Pulmonares/complicaciones , Corteza Cerebral , Lóbulo Temporal
17.
BMC Microbiol ; 24(1): 291, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097685

RESUMEN

BACKGROUND: Taxol, derived from Taxus trees, is a valuable natural resource for the development of anticancer drugs. Endophytic fungi from Taxus trees are a promising alternative source of Taxol. However, the impact of plant-endophytic microbial interaction on the host's Taxol biosynthesis is largely unknown. RESULTS: In the current study, the diversity of endophytic fungi in three different Taxus species was analyzed using Internal Transcribed Spacer sequencing. A total of 271 Operational Taxonomic Units (OTUs) were identified, grouping into 2 phyla, 8 classes, 16 orders, 19 families, and 19 genera. Alpha and beta diversity analysis indicated significant differences in endophytic fungal communities among the various Taxus trees. At the genus level, Alternaria and Davidiella were predominantly found in T. mairei and T. media, respectively. By utilizing a previously published dataset, a Pearson correlation analysis was conducted to predict the taxol biosynthesis-related fungal genera. Following screening, two isolates of Alternaria (L7 and M14) were obtained. Effect of inoculation with Alternaria isolates on the gene expression and metabolite accumulation of T. mairei was determined by transcriptomic and untargeted metabolomic studies. The co-inoculation assay suggests that the two Alternaria isolates may have a negative regulatory effect on taxol biosynthesis by influencing hormone signaling pathways. CONCLUSION: Our findings will serve as a foundation for advancing the production and utilization of Taxus and will also aid in screening endophytic fungi related to taxol production.


Asunto(s)
Alternaria , Endófitos , Paclitaxel , Taxus , Taxus/microbiología , Paclitaxel/biosíntesis , Endófitos/genética , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Endófitos/clasificación , Alternaria/genética , Alternaria/metabolismo , Alternaria/clasificación , Alternaria/aislamiento & purificación , Filogenia , Hongos/genética , Hongos/metabolismo , Hongos/clasificación , Hongos/aislamiento & purificación , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética
18.
Reproduction ; 168(2)2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38744310

RESUMEN

In brief: Abnormal glucose metabolism may be involved in the pathogenesis of endometriosis. The present study identifies that highly expressed H19 leads to increased aerobic glycolysis and histone lactylation levels in endometriosis. Abstract: Previous studies from our group and others have shown increased IncRNA H19 expression in both the eutopic endometrium and the ectopic endometriosis tissue during endometriosis. In this study, we use immunofluorescence, immunohistochemistry, and protein quantification to determine that levels of aerobic glycolysis and histone lactylation are increased in endometriosis tissues. In human endometrial stromal cells, we found that high H19 expression resulted in abnormal glucose metabolism by examining the levels of glucose, lactate, and ATP and measuring protein levels of enzymes that participate in glycolysis. At the same time, immunofluorescence and western blotting demonstrated increased histone lactylation in H19 overexpressing cells. Altering aerobic glycolysis and histone lactylation levels through the addition of sodium lactate and 2-deoxy-d-glucose demonstrated that increased aerobic glycolysis and histone lactylation levels resulted in enhanced cell proliferation and cell migration, contributing to endometriosis. To validate these findings in vivo, we constructed an endometriosis mouse model, demonstrating similar changes in endometriosis tissues in vivo. Both aerobic glycolysis and histone lactylation levels were elevated in endometriotic lesions. Taken together, these data demonstrate elevated expression levels of H19 in endometriosis patients promote abnormal glucose metabolism and elevated histone lactylation levels in vivo, enhancing cell proliferation and migration and promoting the progression of endometriosis. Our study provides a functional link between H19 expression and histone lactylation and glucose metabolism in endometriosis, providing new insights into disease mechanisms that could result in novel therapeutic approaches.


Asunto(s)
Endometriosis , Glucólisis , Histonas , ARN Largo no Codificante , Femenino , Endometriosis/metabolismo , Endometriosis/patología , Endometriosis/genética , Humanos , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Histonas/metabolismo , Animales , Ratones , Proliferación Celular , Endometrio/metabolismo , Endometrio/patología , Adulto , Glucosa/metabolismo
19.
Opt Lett ; 49(20): 5767-5770, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39404533

RESUMEN

Intensity modulation direct detection (IM/DD) orbital angular momentum (OAM) mode division multiplexing (MDM) technology can greatly expand the capacity of a communication system, which is a promising solution for the next generation of high-speed passive optical networks (PONs). However, there are serious obstacles such as mode coupling, device nonlinear impairment, and quantization noise in an IM/DD OAM-MDM system with a low-resolution digital-to-analog converter (DAC). In this Letter, we propose a novel, to the best of our knowledge, end-to-end (E2E) learning scheme based on a double residual feature decoupling network (DRFDnet) emulator with joint probabilistic shaping (PS) and noise shaping (NS) for the OAM-MDM IM/DD transmission. Our DRFDnet emulator can accurately build a complex nonlinear model of an OAM-MDM system by separating the signal impairments into linear and nonlinear. Meanwhile, a DRFDnet-based E2E scheme for joint PS and NS is presented with the aim of compensating the signal impairment for the OAM-MDM IM/DD system. An experiment is carried out on a 200 Gbit/s PON system based on the OAM-MDM IM/DD transmission. The experimental results demonstrate that the proposed DRFDnet-based joint PS and NS scheme is a promising solution to effectively mitigate nonlinear distortions and outperforms the CGAN-based joint PS and NS scheme and traditional joint PS and NS scheme with receiver sensitivity improvements of 1.2 dBm and 2.5 dBm under hard-decision forward error correction (HD-FEC) thresholds, respectively. Our experimental results demonstrate that the proposed DRFDnet emulator-based E2E learning scheme is a viable candidate for future PON.

20.
Phys Rev Lett ; 132(14): 140201, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640382

RESUMEN

We show that some sets of quantum observables are unique up to an isometry and have a contextuality witness that attains the same value for any initial state. We prove that these two properties make it possible to certify any of these sets by looking at the statistics of experiments with sequential measurements and using any initial state of full rank, including thermal and maximally mixed states. We prove that this "certification with any full-rank state" (CFR) is possible for any quantum system of finite dimension d≥3 and is robust and experimentally useful in dimensions 3 and 4. In addition, we prove that complete Kochen-Specker sets can be Bell self-tested if and only if they enable CFR. This establishes a fundamental connection between these two methods of certification, shows that both methods can be combined in the same experiment, and opens new possibilities for certifying quantum devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA