Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Orthod Craniofac Res ; 27(1): 139-150, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37534780

RESUMEN

BACKGROUND: The visible maxillary arch width (VAW) is an important aesthetic-determining feature. To date, there is no well-established methodology to determine the aesthetically optimal VAW in customized treatment planning. METHODS: In this study, the common traits of the dentofacial configuration were investigated in most attractive Asian and Caucasian female smiles. The smiling photo of a subject was digitally modified based on combined variations of VAW, smile width (SW), transverse facial dimensions (TFD), and vertical facial dimensions. These modified photos were assessed for aesthetics. The aesthetically essential parameters were identified, and their mathematic correlations and reference ranges were determined for different vertical facial patterns. Using the obtained results, a mathematic guidance was constructed for customized smile designing. The applicability of this guidance was tested in Asian females. RESULTS: The most attractive Asian and Caucasian female smiles have intraracial and interracial commonalities in the VAW-to-TFD ratios. The interparopia width (IPD) predominated over facial widths in determining well-matched VAW and SW. For optimal smile aesthetics, the VAW and SW were correlated as simulated by the formula 1.92 IPD ≤ VAW + 2.3 SW ≤ 2.17 IPD, plus the VAW-to-IPD ratio within 0.54 to 0.62 and the SW-to-IPD ratio within 0.61 to 0.71, ranges tailored to vertical facial patterns. This constitutes a mathematic guidance for customized planning of the aesthetically optimal VAW. This guidance was preliminarily validated to be applicable to Asian females. CONCLUSIONS: The VAW-to-TFD ratios were essential for Caucasian and Asian female smile aesthetics. The mathematic guidance could serve as a reference for customized smile designs for Asian females.


Asunto(s)
Sonrisa , Diente , Humanos , Femenino , Estética Dental , Cara , Maxilar
2.
Nucleic Acids Res ; 49(21): 12167-12177, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34791385

RESUMEN

The 3D genome organization is crucial for gene regulation. Although recent studies have revealed a uniquely relaxed genome conformation in totipotent early blastomeres of both fertilized and cloned embryos, how weakened higher-order chromatin structure is functionally linked to totipotency acquisition remains elusive. Using low-input Hi-C, ATAC-seq and ChIP-seq, we systematically examined the dynamics of 3D genome and epigenome during pluripotent to totipotent-like state transition in mouse embryonic stem cells (ESCs). The spontaneously converted 2-cell-embryo-like cells (2CLCs) exhibited more relaxed chromatin architecture compared to ESCs, including global weakening of both enhancer-promoter interactions and TAD insulation. While the former correlated with inactivation of ESC enhancers and down-regulation of pluripotent genes, the latter might facilitate contacts between the putative new enhancers arising in 2CLCs and neighboring 2C genes. Importantly, disruption of chromatin organization by depleting CTCF or the cohesin complex promoted the ESC to 2CLC transition. Our results thus establish a critical role of 3D genome organization in totipotency acquisition.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica , Animales , Ratones , Conformación Molecular , Células Madre Embrionarias de Ratones
3.
Clin Oral Investig ; 27(9): 5141-5151, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37415046

RESUMEN

OBJECTIVE: This study evaluated the effect of offset on the precision of three-dimensional (3D)-printed splints, proposing to optimize the splint design to compensate for systematic errors. MATERIALS AND METHODS: 14 resin model sets were scanned and offset as a whole by given distances (0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, and 0.40 mm). Intermediate splints (ISs) and final splints (FSs) were generated from the non-offset and offset models and grouped correspondingly, named as splint type-offset value, IS-0.05, for instance. Dentitions occluded with the splint were scanned. Translational and rotational deviations of the lower dentition relative to the upper dentition were 3D measured. RESULTS: Deviations of ISs and FSs were more evident in the vertical and pitch dimensions, and were mostly acceptable in other dimensions. ISs with offset ≥ 0.05 mm showed vertical deviations significantly below 1 mm (P < 0.05) while ISs with 0.10- to 0.30-mm offsets had pitch rotations significantly lower than 1° (P < 0.05). The Pitch of IS-0.35 was significantly larger than ISs with 0.15- to 0.30-mm offsets (P < 0.05). Meanwhile, FSs fit better as the offset increased and FSs with offsets ≥ 0.15 mm all had deviations significantly lower than 1 mm (for translation) or 1° (for rotation) (P < 0.05). CONCLUSIONS: Offset affects the precision of 3D-printed splints. Moderate offset values of 0.10 to 0.30 mm are recommendable for ISs. Offset values ≥ 0.15 mm are recommended for FSs in cases with stable final occlusion. CLINICAL RELEVANCE: This study found the optimal offset ranges for 3D-printed ISs and FSs via a standardized protocol.


Asunto(s)
Exostosis , Procedimientos Quirúrgicos Ortognáticos , Humanos , Férulas (Fijadores) , Ferulas Oclusales , Procedimientos Quirúrgicos Ortognáticos/métodos , Oclusión Dental , Impresión Tridimensional , Diseño Asistido por Computadora
4.
BMC Oral Health ; 22(1): 365, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028874

RESUMEN

BACKGROUND: Accurate integration of the dentitions with the face is essential in dental clinical practice. Here we introduce a noninvasive and efficient protocol to integrate the digitized maxillary dentition with the three-dimensional (3D) facial photo using a prefabricated modified computer-aided design/computer-aided manufacture (CAD/CAM) facebow. METHODS: To integrate the maxillary dentition with the 3D facial photo, the CAD/CAM facebow protocol was applied to 20 patients by taking a series of 3D facial photos in the clinic and integrating them in the laboratory. The integration accuracy of this protocol was compared with that of a valid 3D computed tomography (CT)-aided protocol concerning translational deviations of the landmarks representing maxillary incisors and maxillary first molars as well as the rotational deviation of the maxillary dentition. The intra- and inter-observer reproducibility was assessed, and the time of clinical operation and laboratory integration was recorded. RESULTS: This facebow-aided protocol generated 3D fused images with colored faces and high-resolution dentitions, and showed high reproducibility. Compared with the well-established CT-aided protocol, the translational deviations ranged from 0 to 1.196 mm, with mean values ranging from 0.134 to 0.444 mm, and a relatively high integration error was found in the vertical dimension (Z) with a mean ± standard deviation (SD) of 0.379 ± 0.282 mm. Meanwhile, the rotational deviations ranged from 0.020 to 0.930°, with mean values less than 1°, and the most evident deviation was seen in pitch rotation with a mean ± SD of 0.445 ± 0.262°. The workflow took 4.34 ± 0.19 min (mins) for clinical operation and 11.23 ± 0.29 min for laboratory integration. CONCLUSION: The present radiation-free protocol with the modified CAD/CAM facebow provided accurate and reproducible transfer of the digitized maxillary dentition to the 3D facial photo with high efficiency.


Asunto(s)
Diseño Asistido por Computadora , Dentición , Humanos , Imagenología Tridimensional , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X
5.
BMC Oral Health ; 22(1): 218, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655203

RESUMEN

BACKGROUND: Precise orthognathic surgical splints are important in surgical-orthodontic treatment. This study aimed to propose a standardized protocol for three-dimensional (3D)-printed splints and assess the precision of splints with different occlusal coverage on the dentition (occlusal coverage depth, OCD), thus optimizing the design of 3D-printed splints to minimize the seemingly unavoidable systematic errors. METHODS: Resin models in optimal occlusion from 19 patients were selected and scanned. Intermediate splints (ISs) and final splints (FSs) with 2-mm, 3-mm, 4-mm, and 5-mm OCDs were fabricated and grouped as IS-2, IS-3, IS-4, IS-5, FS-2, FS-3, FS-4, and FS-5, respectively. The dentitions were occluded with each splint and scanned as a whole to compare with the original occlusion. Translational and rotational deviations of the lower dentition and translational deviations of the landmarks were measured. RESULTS: For vertical translation, the lower dentitions translated inferiorly to the upper dentition in most of the splints, and the translation increased as OCD got larger. Vertical translations of the dentitions in 89.47% of IS-2, 68.42% of IS-3, 42.11% of IS-4, 10.53% of IS-5, 94.74% of FS-2, 63.16% of FS-3, 26.32% of FS-4, and 21.05% of FS-5 splints were below 1 mm, respectively. For pitch rotation, the lower dentitions rotated inferiorly and posteriorly in most groups, and the rotation increased as OCD got larger. Pitch rotations of the dentitions in 100% of IS-2, 89.47% of IS-3, 57.89% of IS-4, 52.63% of IS-5, 100.00% of FS-2, 78.95% of FS-3, 52.63% of FS-4, and 47.37% of FS-5 splints were below 2°, respectively. On the other hand, the transversal and sagittal translations, roll and yaw rotations of most groups were clinically acceptable (translation < 1 mm and rotation < 2°). The deviations of ISs and FSs showed no statistical significance at all levels of coverage (P > 0.05). CONCLUSIONS: A protocol was proposed to generate 3D-printed ISs and FSs with normalized basal planes and standardized OCDs. Deviations of the ISs and FSs were more evident in the vertical dimension and pitch rotation and had a tendency to increase as the OCD got larger. ISs and FSs with both 2-mm and 3-mm OCD are recommendable regarding the precision relative to clinical acceptability. However, considering the fabrication, structural stability, and clinical application, ISs and FSs with 3-mm OCD are recommended for accurate fitting.


Asunto(s)
Procedimientos Quirúrgicos Ortognáticos , Férulas (Fijadores) , Humanos , Ferulas Oclusales , Procedimientos Quirúrgicos Ortognáticos/métodos , Impresión Tridimensional , Dimensión Vertical
6.
Am J Orthod Dentofacial Orthop ; 157(2): 269-277, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32005479

RESUMEN

INTRODUCTION: A protocol was introduced to achieve accurate bracket placement in vivo, which consisted of operative procedures for precise control, and a computer-aided design and computer-aided manufacturing-guided bonding device. To evaluate the accuracy of this protocol, a 3-dimensional assessment was performed. METHODS: Ten consecutive patients were enrolled. Strictly following the protocol, from December 2017 to March 2018, brackets were placed on the teeth of each patient using the device. To evaluate the accuracy, deviations of positions and orientations for bracket placement were measured. Each patient was followed up after 3 months regarding bracket failures. RESULTS: The guided bonding device was used in all cases, and a total of 205 brackets were successfully bonded and evaluated. Except for 15.12% brackets with torque deviation over 2°, the deviations in mesiodistal, buccolingual, vertical, rotation, and angulation were below the clinical acceptable range (0.5 mm in translation or 2° in orientation) for all brackets. In the 3-month follow-up, there was no bracket failure in any patient. CONCLUSION: This protocol transferred the planned bracket position from the digital setup to patient's dentition with generally high positional accuracy.


Asunto(s)
Diseño Asistido por Computadora , Recubrimiento Dental Adhesivo , Soportes Ortodóncicos , Humanos , Modelos Dentales
7.
J Cell Physiol ; 234(4): 5086-5096, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30341888

RESUMEN

During orthodontic tooth movement (OTM), periodontal ligament cells (PDLCs) receive the mechanical stimuli and transform it into myofibroblasts (Mfbs). Indeed, previous studies have demonstrated that mechanical stimuli can promote the expression of Mfb marker α-smooth muscle actin (α-SMA) in PDLCs. Transforming growth factor ß1 (TGF-ß1), as the target gene of yes-associated protein (YAP), has been proven to be involved in this process. Here, we sought to assess the role of YAP in Mfbs differentiation from PDLCs. The time-course expression of YAP and α-SMA was manifested in OTM model in vivo as well as under tensional stimuli in vitro. Inhibition of RhoA/Rho-associated kinase (ROCK) pathway using Y27632 significantly reduced tension-induced Mfb differentiation and YAP expression. Moreover, overexpression of YAP with lentiviral transfection in PDLCs rescued the repression effect of Mfb differentiation induced by Y27632. These data together suggest a crucial role of YAP in regulating tension-induced Mfb differentiation from PDLC interacted with RhoA/ROCK pathway.


Asunto(s)
Actinas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Miofibroblastos/citología , Ligamento Periodontal/citología , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Diferenciación Celular/fisiología , Humanos , Masculino , Modelos Animales , Ratas , Ratas Sprague-Dawley , Estrés Mecánico , Técnicas de Movimiento Dental , Proteínas Señalizadoras YAP
8.
J Prosthodont ; 28(7): 731-736, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31206863

RESUMEN

In full-arch implant-supported rehabilitation of patients with severe periodontitis, prediction of lateral facial profile with modified dental position remains a challenge, especially for patients with protruded anterior teeth. This clinical report describes a digital workflow to predict lateral profiles and then guide the implant placement and restoration fabrication.


Asunto(s)
Implantación Dental Endoósea , Prótesis Dental de Soporte Implantado , Humanos
9.
Exp Cell Res ; 353(2): 55-62, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28223136

RESUMEN

Myofibroblasts are specialized cells that play a key role in connective tissue remodeling and reconstruction. Alpha-smooth muscle actin (α-SMA), vimentin and tenascin-C are myofibroblast phenotype, while α-SMA is the phenotypic marker. The observation that human periodontal ligament cells (hPDLCs) differentiate into myofibroblasts under orthodontic force has provided a new perspective for understanding of the biological and biomechanical mechanisms involved in orthodontic tooth movement. However, the cell-specific molecular mechanisms leading to myofibroblast differentiation in the periodontal ligament (PDL) remain unclear. In this study, we found that expression of Wnt3α, transforming growth factor-ß1 (TGF-ß1), α-SMA and tenascin-C increased in both tension and compression regions of the PDL under orthodontic load compared with unloaded control, suggesting that upregulated Wnt3α and TGF-ß1 signaling might have roles in myofibroblast differentiation in response to orthodontic force. We reveal in vitro that both Wnt3α and TGF-ß1 promote myofibroblast differentiation from hPDLCs. Dickkopf-1 (DKK1) impairs Wnt3α-induced myofibroblast differentiation in a ß-catenin-dependent manner. TGF-ß1 stimulates myofibroblast differentiation via a JNK-dependent mechanism. DKK1 has no significant effect on TGF-ß1-induced myofibroblastic phenotype.


Asunto(s)
Diferenciación Celular/genética , Ligamento Periodontal/crecimiento & desarrollo , Factor de Crecimiento Transformador beta/biosíntesis , Proteína Wnt3A/biosíntesis , Actinas/biosíntesis , Actinas/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Miofibroblastos/citología , Miofibroblastos/metabolismo , Ligamento Periodontal/metabolismo , Transducción de Señal/genética , Tenascina/biosíntesis , Tenascina/genética , Factor de Crecimiento Transformador beta/genética , Vimentina/biosíntesis , Vimentina/genética , Proteína Wnt3A/genética , beta Catenina/genética , beta Catenina/metabolismo
10.
J Craniofac Surg ; 26(2): 532-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25668109

RESUMEN

INTRODUCTION: Surgeons and orthodontists used to use a conventional set of facial photographs, composed of front, front smiling, and profile images to evaluate facial esthetics, whereas sagittal and oblique smiling profile images have been largely neglected in practice. The aim of this study was to explore the importance of sagittal and oblique smiling profiles in evaluating facial esthetics. METHODS: Photographs from 80 patients, of whom 40 underwent orthognathic surgery and 40 underwent orthodontic treatment, including front, front smiling, profile, sagittal profile smiling, and oblique profile smiling images before and after treatment, were collected and synthesized into 6 categories. Thirty judges gave scores to these photographs based on their own esthetic conception with a 1-week interval for each category. RESULTS: The results demonstrated that the mean score change of evaluating facial attractiveness of patients who underwent orthognathic surgery was lower when adding sagittal or oblique smiling profiles before the treatment, whereas it was higher after the treatment, which were opposite to the orthodontic treatment group with a higher score before the treatment and a lower score after the treatment when sagittal or oblique smiling profiles were added. The changes have a significant difference in adding both sagittal smiling profiles (P < 0.05) and oblique smiling profiles (P < 0.05) before and after treatment. CONCLUSIONS: Along with oblique smiling profile, sagittal smiling profile is crucial in evaluating facial esthetics for orthodontic treatment and orthognathic surgery. Both of them suggested to be integrated in routine photographic assessment of facial attractiveness evaluation before and after treatment, especially in orthognathic surgery for facial esthetic evaluation.


Asunto(s)
Estética Dental , Cara/anatomía & histología , Ortodoncia Correctiva , Cirugía Ortognática , Fotograbar , Sonrisa/fisiología , Adolescente , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Resultado del Tratamiento , Adulto Joven
12.
Angle Orthod ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39317377

RESUMEN

OBJECTIVES: To establish a reference system for assessing the anteroposterior (A-P) position of the subnasal and lower-facial soft tissues for whole facial harmony. MATERIALS AND METHODS: Forty Asian and 40 Caucasian females with attractive profiles were selected as the "attractive" samples, with "ordinary" samples for comparison. Each profile was analyzed, and comparisons were made to reveal the interracial commonalities and differences. Esthetically essential parameters were established. An averaged attractive profile for each race was created by digital morphing and then modified into 30 variations based on combined variations of the esthetically essential parameters. Assessments were performed to investigate the esthetic ranges. RESULTS: A-P position of the subnasal and lower-facial landmarks harmonized with the forehead for female profile esthetics. In addition to balanced soft tissue subnasale (sSn)- and soft titssue pogonion (Pos)-to-forehead A-P relations, harmonizing lower-facial soft tissues to sSn was indispensable for profile attractiveness. sSn-to-glabella, Pos-to-glabella, and Pos-to-sSn A-P relations were esthetically essential. Perceived by orthodontists, the attractive Asian female profiles had sSn-to-glabella A-P relations ranging from 0.5 mm to 4.5 mm, Pos-to-sSn from -9.0 mm to -5.5 mm, and Pos-to-glabella from -8.5 mm to -1.0 mm. Compared with Asians, the attractive Caucasian female profiles had more anteriorly and widely distributed sSn relative to the forehead, wider ranges of Pos-to-sSn A-P relations, and more prominent chins. CONCLUSIONS: A reference system comprising sSn-glabella, Pos-sSn, and Pos-glabella horizontal distances was constructed for facial profile analysis. This system could aid treatment planning for surgical or orthopedic repositioning of the maxilla and chin.

13.
Angle Orthod ; 94(1): 59-67, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37503736

RESUMEN

OBJECTIVES: To study whether and how the clinical experience of the operator affects the accuracy of bracket placement using guided bonding devices (GBDs) in vitro. MATERIALS AND METHODS: Five resin models were bonded virtually with brackets, and the corresponding GBDs were generated and three-dimensionally printed. Nine operators, which included three dental students, three orthodontic students, and three orthodontists, bonded the brackets on the resin models using GBDs on a dental mannequin. After being bonded with brackets, the models were scanned, and the actual and designed positions of the brackets were compared. RESULTS: There was no immediate debonding. The orthodontists spent a significantly shorter time (22.36 minutes) in bracket bonding than the dental students (24.62 minutes; P < .05). The brackets tended to deviate to the buccal side in the dental student group. Linear deviations tended to be smallest in the orthodontic student group, but no significant difference was found among operators with different clinical experience (P > .5). All linear and angular deviations in each group were under 0.5 mm and 2°, respectively. CONCLUSIONS: Clinical experience was positively related to the bonding accuracy using GBDs, especially in the buccolingual dimension. Inexperience also led to longer bonding duration. However, bonding accuracy was clinically acceptable in general.


Asunto(s)
Recubrimiento Dental Adhesivo , Soportes Ortodóncicos , Humanos , Recubrimiento Dental Adhesivo/métodos , Ortodoncistas , Estudiantes
14.
Angle Orthod ; 94(1): 68-74, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37839805

RESUMEN

OBJECTIVES: To determine the optimal settings for reconstructing the buccal surfaces of different tooth types using the virtual bracket removal (VBR) technique. MATERIALS AND METHODS: Ten postbonded digital dentitions (with their original prebonded dentitions) were enrolled. The VBR protocol was carried out under five settings from three commonly used computer-aided design (CAD) systems: OrthoAnalyzer (O); Meshmixer (M); and curvature (G2), tangent (G1), and flat (G0) from Geomagic Studio. The root mean squares (RMSs) between the reconstructed and prebonded dentitions were calculated for each tooth and compared with the clinically acceptable limit (CAL) of 0.10 mm. RESULTS: The overall prevalences of RMSs below the CAL were 66.80%, 70.08%, 62.30%, 94.83%, and 56.15% under O, M, G2, G1, and G0, respectively. For the upper dentition, the mean RMSs were significantly lower than the CAL for all tooth types under G1 and upper incisors and canines under M and G2. For the lower dentition, the mean RMSs were significantly lower than the CAL for all tooth types under G1 and lower incisors and canines under M, G2, and G0 (all P < .05). Additionally, the mean RMSs of all teeth under G1 were significantly lower than those under the other settings (all P < .001). CONCLUSIONS: The optimal settings varied among different tooth types. G1 performed best for most tooth types compared to the other four settings.


Asunto(s)
Incisivo , Raíz del Diente , Diseño Asistido por Computadora
15.
J Dent ; 147: 105108, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38844153

RESUMEN

OBJECTIVES: This study aimed to propose a standardized protocol for the fabrication of three-dimensionally (3D)-printed curvature-adaptive splints (CASs) and assess the precision of CASs on dentitions with different depths of the curve of Spee (COS). METHODS: 76 lower dental resin models, each exhibiting one of the four types of COS (0-, 2-, 4-, and 6-mm deep), were selected and digitally scanned. CASs were designed, 3D printed, and grouped into C0, C2, C4, and C6, corresponding to the four types of COS depths. To assess precision, the CASs occluded with the resin model were scanned as a whole and compared with the originally designed ones. RESULTS: In terms of translational deviations observed in the CASs, the mean value of absolute sagittal deviation (0.136 mm) was significantly higher than those of vertical (0.091 mm) and transversal deviations (0.045 mm) (P < 0.01). Regarding rotational deviations of the CASs, the mean deviation in pitch (0.323°) was significantly higher than those in yaw (0.083°) and roll (0.110°) (P < 0.01). However, when comparing the accuracy of CASs across C0, C2, C4, and C6 groups, no statistically significant difference was found. Additionally, the translational deviations, rotational deviations, and RMSE of all groups were significantly lower than the clinically acceptable limits of 0.5 mm, 1°, and 0.25 mm, respectively (P < 0.01). CONCLUSIONS: The depth of the COS has no significant impact on the precision of CASs, as evidenced by the absence of statistically significant differences in translational, rotational deviations, and RMSE among all groups (C0, C2, C4, and C6). Moreover, despite relatively high deviations in the sagittal dimension and pitch, all dimensional deviations and RMSE remained statistically significantly lower than the corresponding clinically acceptable limits (CALs) in all groups. CLINICAL SIGNIFICANCE: This standardized protocol incorporating "curvature-adaptation" represents an optimized approach to fabricating diverse 3D-printed splints tailored to dentitions with different anatomical features in contemporary digital dentistry.


Asunto(s)
Modelos Dentales , Impresión Tridimensional , Humanos , Diseño Asistido por Computadora , Rotación , Diseño de Aparato Ortodóncico
16.
J Orofac Orthop ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365436

RESUMEN

BACKGROUND: This research aimed to study whether bracket bonding using guided bonding devices (GBDs) is accurate enough for crowded dentitions in vitro. METHODS: Fifteen three-dimensionally (3D) printed resin model sets were included and divided into three groups: mild, moderate, and severe crowding. The resin models were scanned and virtually bonded with brackets. Corresponding GBDs were generated and 3D printed. Subsequently, the brackets were bonded to the resin models on a dental mannequin using the GBDs. The models with bonded brackets were scanned, and comparisons were made between the positions of the actually bonded and the planned ones to evaluate possible deviations. RESULTS: There was no immediate bonding failure in any group. The bonding duration tended to increase with crowding severity (P > 0.05). Almost all linear and angular deviations in all groups were below 0.5 mm and 2°, respectively, and no statistically significant difference was found among the different crowding degrees (P > 0.05). In all groups, the brackets tended to deviate lingually and had buccal crown torque. Brackets in the groups with mild and severe crowding showed a tendency for mesiobuccal rotation. CONCLUSION: GBDs provide high bracket bonding accuracy for dentitions with different crowding degrees and, thus, could hopefully be applied to uncrowded and crowded dentitions alike.

17.
J Dent ; 131: 104456, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36849067

RESUMEN

OBJECTIVE: To compare the bracket bonding accuracy, efficiency, reproducibility, and three-dimensional (3D) printing duration of the computer-aided design/computer-aided manufacturing (CAD/CAM) unilateral contact guided bonding device (GBD-U) and the bilateral contact guided bonding device (GBD-B) in vitro. METHODS: Five resin dental model sets were scanned and virtually bonded with brackets. GBD-U and GBD-B were designed and 3D printed for each model. GBD-Us had guide blocks that fit the occlusal sides of the bracket tie-wings, while GBD-Bs had guide arms that fit the occlusal and distal sides of the tie-wings. Five orthodontic residents were recruited to bond brackets on the same 3D-printed copies of resin models in a dental mannequin using GBD-Us and GBD-Bs, respectively. The time for 3D printing of GBDs and bracket bonding was recorded. The linear and angular deviations between the bonded brackets and the virtually bonded ones were measured. RESULTS: A total of 50 sets of resin models (1000 brackets/tubes) were bonded. The time for 3D printing and bracket bonding was shorter for GBD-Us (41.96 mins/6.38 mins) than for GBD-Bs (78.04 mins/7.20 mins). In both devices, 100% linear deviations and over 95% angular deviations were below 0.5 mm or 2°, respectively. Deviations in the mesiodistal dimension, torque, angulation, and rotation were significantly lower in the GBD-U group (P<0.01). High inter-operator reproducibility of bracket bonding was confirmed for both devices. CONCLUSION: GBD-U was more time-efficient in 3D printing. Both GBDs showed clinically acceptable accuracy, whereas GBD-U had higher bonding accuracy in the mesiodistal dimension, torque, angulation, and rotation than GBD-B. CLINICAL SIGNIFICANCE: CAD/CAM GBD-U provides high bracket bonding accuracy in a time-efficient manner and has the potential to be clinically applied.


Asunto(s)
Recubrimiento Dental Adhesivo , Soportes Ortodóncicos , Reproducibilidad de los Resultados , Carga Global de Enfermedades , Recubrimiento Dental Adhesivo/métodos , Modelos Dentales , Diseño Asistido por Computadora
18.
Angle Orthod ; 93(4): 447-457, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36806479

RESUMEN

OBJECTIVES: To develop a coupled-lines system to determine the anteroposterior position of maxillary central incisors (U1) for smiling profile esthetics. MATERIALS AND METHODS: Thirty Asian females with ordinary and good facial harmony were selected as the study sample and the control sample, respectively. Three-dimensional facial images and 45°- and 90°-angled profiles were collected. The anteroposterior relationships between U1 and upper- and mid-facial soft tissue landmarks were measured. By morphing photos of the study sample, two artificial images were created to represent the well-balanced 45°- and 90°-angled profiles and were further processed with combined variations of soft tissue subnasale (SSn)-Glabella and the mid-point of facial axial points of the bilateral central incisor (mFA)-SSn distances. Esthetic assessments were performed on these images by layperson (n = 94) and orthodontist (n = 94) raters. RESULTS: Both upper- and mid-facial soft tissue landmarks were indispensable in assessing anteroposterior positions of U1 for well-balanced smiling profiles. As assessed in 45°- and 90°-angled profiles, the most esthetically sensitive parameters were mFA-Glabella and mFA-SSn distances. A coupled-lines system was constructed, comprising the Glabella and SSn vertical lines. In smiling profiles with optimal esthetics, the mFA point was at 2 to 5 mm posterior to the Glabella vertical and concomitantly 4 to 7 mm posterior to the SSn vertical, as perceived by orthodontists. Laypersons gave a wider range for mFA-Glabella distances, at 2 to 6 mm. CONCLUSIONS: The coupled-lines system could serve as a reliable reference for determining esthetically optimal anteroposterior positions of U1 for female facial profiles.


Asunto(s)
Incisivo , Sonrisa , Humanos , Femenino , Maxilar , Estética Dental , Ortodoncistas , Actitud del Personal de Salud
19.
J Orofac Orthop ; 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36102945

RESUMEN

BACKGROUND: This study aimed to evaluate the effects of offset design on the accuracy of bracket placement for computer-aided design and computer-aided manufacturing (CAD/CAM)-guided bonding devices (GBDs) in vitro. METHODS: Eight dental models were selected. Seven types of GBDs were designed and three-dimensionally (3D) printed for each model, including one without any offset and the other six with translation offsets (TF) and expansion offsets (EF) of 0.05, 0.10, and 0.15 mm, respectively. After the brackets were bonded on the models using the different GBDs in vitro, linear and angular deviations of the bracket positions were evaluated. RESULTS: In total, 56 GBDs were printed, and 784 brackets were bonded using the GBDs. No misfit between the dentitions and the devices was found during the bonding process. With increasing offset, more brackets were gingivally positioned with the frequencies ranging from 61.61 to 76.79% for the TF groups and from 58.93 to 78.57% for the EF groups. The vertical deviations of the brackets increased from 0.100 to 0.168 mm and from 0.117 to 0.150 mm in the TF and the EF group, respectively, as offset increased. No statistically significant difference was found in the vertical deviation between most of the TF and EF groups with the same offset value (p > 0.05). With respect to angulation, the mean absolute deviations were 0.881, 1.083, and 1.029° in the 0.05-mm, 0.10-mm, and 0.15-mm EF groups, respectively, which were greater than those in the corresponding TF groups (0.799, 0.847, and 0.806°). Similarly, with increasing offset, the mean absolute deviations for rotation in the EF groups (0.847, 0.998, and 1.138°) were greater than those in the TF groups (0.853, 0.946, and 0.896°). Compared with the 0.15-mm TF group, greater angulations (p < 0.05) and rotations (p < 0.01) were found in the 0.15-mm EF group. CONCLUSIONS: Offset designs influenced the precision of vertical bracket placement with GBDs. Due to the smaller deviations in angulation and rotation of bracket placement, TF is preferred over EF for GBDs. Moreover, the differences between TF and EF also need to be considered in the design of other dental CAD/CAM devices.

20.
Angle Orthod ; 91(3): 399-415, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33373430

RESUMEN

Treatment of skeletal Class II patients with dual bite and idiopathic condylar resorption (ICR) is challenging for orthodontists because of the unstable position of the mandible as well as skeletal relapse attributed to improper seating of the mandibular condyles. This case report describes the successful treatment of an 18-year-old Mongolian man diagnosed with centric relation-maximum intercuspation discrepancy and ICR. After making a definitive diagnosis from verified centric relation using bilateral manipulation, orthodontic treatment was initiated followed by three-dimensional computer-aided design/computer-aided manufacturing prebent titanium plate-guided sagittal split ramus osteotomy and genioplasty. Postoperative 3D superimposition demonstrated that this surgical guide approach provided accurate repositioning of the condyles, which were well positioned in the fossae. Complete orthodontic and surgical treatment time was 24 months. The patient's facial appearance and occlusion improved significantly, and a stable result was obtained with a 1-year follow-up.


Asunto(s)
Maloclusión de Angle Clase III , Maloclusión Clase II de Angle , Procedimientos Quirúrgicos Ortognáticos , Adolescente , Cefalometría , Humanos , Masculino , Maloclusión Clase II de Angle/complicaciones , Maloclusión Clase II de Angle/diagnóstico por imagen , Maloclusión Clase II de Angle/cirugía , Mandíbula , Cóndilo Mandibular/diagnóstico por imagen , Cóndilo Mandibular/cirugía , Osteotomía Sagital de Rama Mandibular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA