Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cytokine ; 183: 156746, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39236430

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a common musculoskeletal disorder characterized by chondrocyte apoptosis and extracellular matrix degradation. This study aimed to investigate the role of CCL4/CCR5 in regulating chondrocyte apoptosis and reactive oxygen species (ROS) levels in OA progression. METHODS: Bioinformatics analysis was employed to identify CCL4 as the target gene, following which primary chondrocytes were treated with varying concentrations of CCL4. Apoptosis rate of chondrocytes and ROS levels were assessed using flow cytometry. The mechanism by which CCL4 regulated the extracellular matrix was investigated through Western blot and Immunofluorescence analyses. Additionally, maraviroc, a CCR5 inhibitor, was administered to chondrocytes in order to explore the potential signaling pathway of CCL4/CCR5. RESULTS: Our study found that CCL4 was predominantly up-regulated among the top 10 hub genes identified in RNA-sequencing analysis. Validation through quantitative polymerase chain reaction (qPCR) confirmed elevated CCL4 expression in patients with Hip joint osteoarthritis, knee joint osteoarthritis, and facet joint osteoarthritis. The upregulation of CCL4 was associated with an increase in chondrocyte apoptosis and ROS levels. Mechanistically, CCL4, upon binding to its receptor CCR5, triggered the downstream phosphorylation of P65 in the nuclear factor-κB (NF-κB) signaling pathway. In vitro experiments demonstrated that treatment with maraviroc mitigated chondrocyte apoptosis, reduced intracellular ROS levels, and attenuated extracellular matrix degradation. CONCLUSION: The study highlights the critical role of CCL4/CCR5 in modulating chondrocyte apoptosis and ROS levels in OA progression. Targeting this pathway may offer promising therapeutic interventions for mitigating the pathogenic mechanisms associated with OA.


Asunto(s)
Apoptosis , Quimiocina CCL4 , Condrocitos , Progresión de la Enfermedad , Osteoartritis , Especies Reactivas de Oxígeno , Receptores CCR5 , Condrocitos/metabolismo , Condrocitos/patología , Humanos , Receptores CCR5/metabolismo , Receptores CCR5/genética , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/genética , Quimiocina CCL4/metabolismo , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Maraviroc/farmacología , Matriz Extracelular/metabolismo , FN-kappa B/metabolismo , Masculino , Células Cultivadas , Regulación hacia Arriba , Persona de Mediana Edad
2.
Curr Pain Headache Rep ; 28(3): 95-108, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37976014

RESUMEN

PURPOSE OF REVIEW: Intervertebral disc degeneration is the primary etiology of low back pain and radicular pain. This review examines the roles of crucial chemokines in different stages of degenerative disc disease, along with interventions targeting chemokine function to mitigate disc degeneration. RECENT FINDINGS: The release of chemokines from degenerated discs facilitates the infiltration and activation of immune cells, thereby intensifying the inflammatory cascade response. The migration of immune cells into the venous lumen is concomitant with the emergence of microvascular tissue and nerve fibers. Furthermore, the presence of neurogenic factors secreted by disc cells and immune cells stimulates the activation of pain-related cation channels in the dorsal root ganglion, potentially exacerbating discogenic and neurogenic pain and intensifying the degenerative cascade response mediated by chemokines. Gaining a deeper comprehension of the functions of chemokines and immune cells in these processes involving catabolism, angiogenesis, and injury detection could offer novel therapeutic avenues for managing symptomatic disc disease.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Dolor de la Región Lumbar , Humanos , Degeneración del Disco Intervertebral/terapia , Disco Intervertebral/metabolismo , Dolor de la Región Lumbar/etiología , Quimiocinas/metabolismo , Ganglios Espinales
3.
J Biol Chem ; 298(10): 102443, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36055408

RESUMEN

Spinal cord injury (SCI) is the most severe result of spine injury, but no effective therapy exists to treat SCI. We have previously shown that the E3 ubiquitin ligase Two RING fingers and DRIL 1 (Triad1) promotes neurite outgrowth after SCI. However, the mechanism by which Triad1 affects neuron growth and the potential involvement of its ubiquitination activity is unclear. Neuroprotective cytokine pleiotrophin (PTN) can promote microglia proliferation and neurotrophic factor secretion to achieve neuroprotection. We find using immunostaining and behavioral assays in rats that the expression of Triad1 and the PTN was peaked at 1 day after SCI and Triad1 improved motor function and histomorphological injury after SCI. We show using flow cytometry and astrocyte/neuronal coculture assays that Triad1 overexpression promoted PTN protein levels, neurotrophic growth factor (NGF) expression, brain-derived neurotrophic factor (BDNF) expression, astrocyte and neuronal viability, and neurite outgrowth but suppressed astrocyte apoptosis, while shRNA-mediated knockdown of Triad1 and PTN had the opposite effects. Ubiquitin ligase murine double mutant 2 (MDM2) has previously been demonstrated to participate in the process of neurite outgrowth and mediate ubiquitination of p53. Furthermore, we demonstrate overexpression of MDM2 downregulated PTN protein levels, NGF expression and BDNF expression in astrocytes, and inhibited neurite outgrowth of neurons. In addition, MDM2 facilitated PTN ubiquitination, which was reversed by Triad1. Finally, we show simultaneous sh-PTN and MDM2 overexpression attenuated the neurite outgrowth-promoting effect of Triad1 overexpression. In conclusion, we propose Triad1 promotes astrocyte-dependent neurite outgrowth to accelerate recovery after SCI by inhibiting MDM2-mediated PTN ubiquitination.


Asunto(s)
Traumatismos de la Médula Espinal , Ubiquitina , Animales , Ratones , Ratas , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Neuritas/metabolismo , Proyección Neuronal/genética , Neuroprotección , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Expresión Génica
4.
Mol Biol Rep ; 49(7): 6459-6466, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35581507

RESUMEN

Lumbar facet osteoarthritis (FJOA) is a major cause of severe lower back pain and disability worldwide. However, the mechanism underlying cartilage degeneration in FJOA remains unclear. The purpose of this study was to investigate the regulation and mechanism of P2Y12 on chondrocyte apoptosis in FJOA. The experimental rats were randomly divided into non-operation (n = 20) and operation groups (n = 20). In the operation group, Sodium iodoacetate (MIA, Sigma, 200 mg/mL) was injected into the right L4/5 facet process using a blunt nanoneedle 26 (WPI, Sarasota, FL, USA) under the control of an injection pump. The final injection volume was 5µL and the injection rate was 2µL/min. The facet joint was removed four weeks after surgery. After the operation, samples were stored at -80 °C until further use, whereby the right facet joints in each group were tested. Hematoxylin and eosin (HE) and iron-red solid green staining were used to observe the degeneration of articular chondrocytes in rats. Immunohistochemistry and western blotting were used to observe the expressions of P2Y12, Matrix metalloproteinase 13 (MMP13), Collagen II (COL2), and other cartilage degeneration and apoptosis-related genes. Co-localization of P2Y12-cleaved caspase-3 in the apoptosis model was detected by dual-standard immunofluorescence staining. Apoptosis was also detected by flow cytometry and TUNEL assay.P2Y12 is highly expressed in OA cartilage tissue, and inhibits IL-1ß -induced chondrocyte apoptosis through PI3K/AKT signaling pathway, thus playing a certain protective role on cartilage.


Asunto(s)
Condrocitos , Osteoartritis de la Columna Vertebral , Receptores Purinérgicos P2Y12/metabolismo , Animales , Apoptosis , Condrocitos/metabolismo , Osteoartritis de la Columna Vertebral/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Regulación hacia Arriba
5.
Somatosens Mot Res ; 39(1): 21-28, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34641746

RESUMEN

PURPOSE: Spinal cord injury entails a high risk of major disability, but there is still no effective treatment for this condition. This study aims to explore the neuronal apoptosis after spinal cord injury, which is a key component of secondary injury processes, and plays a critical role in the development of neurological dysfunction. MATERIALS AND METHODS: We studied the expression of the E3 ubiquitin ligase Triad1 and its interaction with p53 in the spinal cord after a spinal cord contusion injury in rats. We explored the regulation function of Triad1 to the neuronal apoptosis through p53-caspase3 pathway in primary neurons. RESULTS: Triad1 was markedly up-regulated in the grey matter one day after injury, and the distribution and time point of Triad1 expression correlated with the presence of apoptotic neurons. Co-immunoprecipitation experiments further demonstrated that Triad1 interacted with p53 after spinal cord injury. Specific siRNA and overexpression plasmids for Triad1 were transfected into primary neurons, and the expression of both p53 and caspase3 was altered following the change of Triad1. CONCLUSIONS: These findings indicate that Triad1 is involved in regulating the pathological process of neuronal apoptosis mediated by p53-caspase3 pathway after spinal cord injury.


Asunto(s)
Traumatismos de la Médula Espinal , Ubiquitina-Proteína Ligasas , Animales , Apoptosis , Neuronas/metabolismo , Ratas , Médula Espinal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
Mol Cell Biochem ; 476(4): 1929-1938, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33502650

RESUMEN

Tumor necrosis factor receptor-associated factor 6 (TRAF6), a regulator of NF-κB signaling, has been discovered recently to be probably related to osteoarthritis, while the function of TRAF6 in lumbar facet joint osteoarthritis(FJOA)still remains unknown. The aim of this study was to probe the specific function of TRAF6 in chondrocytes and its connection with the pathophysiology of FJOA. We found upregulation of TRAF6 in FJOA cartilage by western blot analysis. In vitro, we stimulated immortalized human chondrocytes by LPS to establish the cells apoptosis model. Western blot analysis demonstrated that levels of TRAF6 and cleaved caspase-3/8 in the chondrocyte injury model increased significantly. Knockdown of TRAF6 suppressed the expression of matrix metallopeptidase-13 (MMP-13) and interleukin-6 (IL-6) induced by LPS, and alleviated cell apoptosis. Meanwhile, western blot and immunofluorescent staining demonstrated that IκBα degradation and p65 nuclear transportation were also inhibited, revealing that knockdown of TRAF6 suppressed activation of the NF-κB pathway in LPS-induced chondrocytes apoptosis model. Collectively, our findings suggest that TRAF6 plays a crucial role in FJOA development by regulating NF-κB signaling pathway. Knockdown of TRAF6 may supply a potential therapeutic strategy for FJOA.


Asunto(s)
Apoptosis , Condrocitos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Osteoartritis de la Columna Vertebral/metabolismo , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Articulación Cigapofisaria/metabolismo , Línea Celular Transformada , Condrocitos/patología , Técnicas de Silenciamiento del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Osteoartritis de la Columna Vertebral/genética , Osteoartritis de la Columna Vertebral/patología , Factor de Transcripción ReIA/genética , Articulación Cigapofisaria/patología
7.
Somatosens Mot Res ; 38(4): 339-346, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34553673

RESUMEN

PURPOSE: Low back pain (LBP) is a long-lasting and chronic symptom without any exact cause. This study attempts to propose a new staging system based on the original grading system combined with pathological results and clinical symptoms to better clarify the dynamic evolution of LBP related to cartilage degeneration during facet joint osteoarthritis (FJOA). To explore a potential target for diagnosis, treatment, and drug intervention of facet joint osteoarthritis related LBP via protecting chondrocytes. MATERIALS AND METHODS: All the facet joints were divided into 4 groups according to our new degenerative staging system based on Weishaupt grade, CT and MRI. Collect the facet joint samples from patients whom suffered lumbar fusion surgery for lumbar disc herniation. Molecular biology experiments were used to explore the effect of Wnt16 on the degeneration of facet joints. Micro-CT examination and pain stimulation test checked the biological function of Wnt16 in rats. RESULTS: Wnt16 was significantly increased and more aggregated in the facet joint chondrocytes in the Phase III and Phase IV, which is consistent with the pathological findings of cartilage degeneration (OARSI). We found that Wnt16 participated in the regulation of FJOA via Wnt/ß-catenin pathway in vitro, which was inhibited by specific inhibitor DKK1. The rats, rich expressed Wnt16, showed higher paw withdrawal thresholds and prolonged paw withdrawal latency to FJOA related LBP. Micro-CT examination for the lumbar spine of rats showed Wnt16 protected the chondrocytes from FJOA. CONCLUSIONS: This study defined a new staging system for LBP related cartilage degeneration of facet joint based on the original grading system combined with pathological results and clinical symptoms. Wnt16 is expected to be a potential target for treatment of FJOA via protecting chondrocytes.


Asunto(s)
Dolor de la Región Lumbar , Osteoartritis , Articulación Cigapofisaria , Animales , Condrocitos , Humanos , Vértebras Lumbares , Osteoartritis/complicaciones , Ratas , Proteínas Wnt , Articulación Cigapofisaria/diagnóstico por imagen , beta Catenina
8.
Sensors (Basel) ; 20(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352738

RESUMEN

As an important part of the wetland ecosystem, alpine wetland is not only one of the most important ecological water conservation areas in the Qinghai-Tibet Plateau region, but is also an effective regulator of the local climate. In this study, using three machine learning algorithms to extract wetland, we employ the landscape ecological index to quantitatively analyze the evolution of landscape patterns and grey correlation to analyze the driving factors of Zoige wetland landscape pattern change from 1995 to 2020. The following results were obtained. (1) The random forest algorithm (RF) performs best when dealing with high-dimensional data, and the accuracy of the decision tree algorithm (DT) is better. The performance of the RF and DT is better than that of the support vector machine algorithm. (2) The alpine wetland in the study area was degraded from 1995 to 2015, whereas wetland area began to increase after 2015. (3) The results of landscape analysis show the decrease in wetland area from 1995 to 2005 was mainly due to the fragmentation of larger patches into many small patches and loss of the original small patches, while the 2005 to 2015 decrease was caused by the loss of many middle patches and the decrease in large patches from the edge to the middle. The 2015 to 2020 increase is due to an increase in the number of smaller patches and recovery of original wetland area. (4) The grey correlation degree further shows that precipitation and evaporation are the main factors leading to the change in the landscape pattern of Zoige alpine wetland. The results are of great significance to the long-term monitoring of the Zoige wetland ecosystem.

9.
Biochem Biophys Res Commun ; 503(3): 1659-1665, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30054040

RESUMEN

Tumor necrosis factor receptor-associated factor 2 (TRAF2) has been demonstrated that it plays a significant role in cell death receptor signal transduction. The purpose of this study was to investigate the expression of TRAF2 and its possible role in FJOA. We observed an up-regulation of TRAF2 in FJOA by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) compared to normal tissues. In vitro, we used TNF-α to stimulate Human SW1353 chondrosarcoma cells to establish the chondrocytes injury model. Western blot analysis revealed significant expression of TRAF2 and cleaved caspase-3/8 in SW1353 cells. Co-localization of TRAF2/cleaved caspase-3/8 was detected in the cells injury model by double-labeling immunofluorescent staining. We demonstrated a possible anti-apoptotic effect of TRAF2 in chondrocyte apoptosis in FJOA by knockdown of its expression with siRNA. Moreover, TRAF2 knockdown was demonstrated to enhance TNF-α-induced apoptosis by flow cytometry assay. In conclusion, our results show that the up-regulation of TRAF2 may play an important role in the inhibition of chondrocyte apoptosis of FJOA.


Asunto(s)
Apoptosis , Condrocitos/metabolismo , Condrocitos/patología , Osteoartritis/fisiopatología , Factor 2 Asociado a Receptor de TNF/metabolismo , Regulación hacia Arriba , Articulación Cigapofisaria/metabolismo , Humanos , Persona de Mediana Edad , Osteoartritis/metabolismo , Osteoartritis/patología , Articulación Cigapofisaria/patología
10.
Neurochem Res ; 43(8): 1631-1640, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29934689

RESUMEN

E3 ubiquitin ligase c-Caritas B cell lymphoma (c-cbl) is associated with negative regulation of receptor tyrosine kinases, signal transduction of antigens and cytokine receptors, and immune response. However, the expression and function of c-cbl in the regulation of neuropathic pain after chronic constriction injury (CCI) are unknown. In rat CCI model, c-cbl inhibited the activation of spinal cord microglia and the release of pro-inflammatory factors including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1ß) and interleukin 6 (IL-6), which alleviated mechanical and heat pain through down-regulating extracellular signal-regulated kinase (ERK) pathway. Additionally, exogenous TNF-α inhibited c-cbl protein level vice versa. In the primary microglia transfected with c-cbl siRNA, when treated with TNF-α or TNF-α inhibitor, the corresponding secretion of IL-1ß and IL-6 did not change. In summary, CCI down-regulated c-cbl expression and induced the activation of microglia, then activated microglia released inflammatory factors via ERK signaling to cause pain. Our data might supply a novel molecular target for the therapy of CCI-induced neuropathic pain.


Asunto(s)
Microglía/efectos de los fármacos , Neuralgia/fisiopatología , Traumatismos de los Nervios Periféricos/fisiopatología , Proteínas Proto-Oncogénicas c-cbl/fisiología , Médula Espinal/fisiopatología , Animales , Secuencia de Bases , Constricción , Regulación hacia Abajo/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-cbl/genética , Ratas Sprague-Dawley , Nervio Ciático/lesiones , Factor de Necrosis Tumoral alfa/farmacología
11.
Tumour Biol ; 37(9): 11893-11901, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27059736

RESUMEN

Protein phosphatase 4 catalytic subunit (PP4C) has been identified to be overexpressed in various solid cancers. However, to date, the role of PP4C in glioma remains elusive. In the present study, we aimed to detect PP4C expression in glioma patients and explore its function in glioma and prognostic significance in patients with glioma. The expression levels of PP4C mRNA and protein in 30 glioma tissue specimens and 10 non-cancerous brain tissue specimens were detected by qRT-PCR and Western blot analysis. Moreover, immunohistochemistry was performed to assess PP4C expression in 120 glioma patients. The effects of siRNA-mediated PP4C silencing on the proliferation, migration, and invasion of U251 and U87 glioma cells were assessed. We found that PP4C was upregulated in glioma tissue at both mRNA and protein levels compared with non-cancerous brain tissue. Univariate and multivariate analyses indicated that high PP4C expression was an independent prognostic factor for poor survival of glioma patients. Knockdown of PP4C reduced the proliferation, migration, and invasion of U251 and U87 cells. In conclusion, our findings suggest that PP4C plays an oncogenic role in glioma development and progression and might serve as a prognostic biomarker as well as a potential therapeutic target for glioma.


Asunto(s)
Neoplasias Encefálicas/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Fosfoproteínas Fosfatasas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Niño , Preescolar , Femenino , Glioma/metabolismo , Glioma/patología , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Fosfoproteínas Fosfatasas/metabolismo , Pronóstico , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto Joven
12.
Micromachines (Basel) ; 15(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38793157

RESUMEN

An exploding foil initiator system (EFIs) is essential in modern weaponry for its safety and reliability. As the main component of EFIs, the performance of the switch is critical to EFIs. In this study, a planar three-electrode trigger switch was designed and fabricated using the Flexible Printed Circuits (FPC) process. Subsequently, the performance of the FPC switch was tested. The results show that the self-breakdown voltage of the FPC switch is stable. In addition, an FPF switch with a 0.6 mm main electrode gap demonstrated consistency, with delay times below 31.75 ns, and a jitter ranging from 1.7 ns to 10.94 ns at 900 V to 1200 V, evidencing the FPC switches' reliability and uniform performance across various voltages. Compared to the Micro-Electro-Mechanical Systems (MEMS) switches of similar dimensions, the FPC switches achieved a faster high-current attainment with less inductance, showing a 5% reduction in loop inductance. The repetitive testing results demonstrate that the FPC switch maintains consistent output performance, with stable peak currents, peak current time, and delay time over 50 action cycles, highlighting its repeatability. The FPC switch was assembled with an EFI chip and capacitor into an integrated system, which was subsequently able to successfully detonate HNS-IV at 1000 V/0.22 µF, proving the FPC switch's potential in low inductance applications.

13.
Micromachines (Basel) ; 15(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38793162

RESUMEN

To enhance the energy efficiency of exploding foil initiator systems (EFIs) and mitigate energy loss due to ablation in the bridge-wing regions, a low-energy bridge-wing-thickened EFI chip was designed and fabricated. Computational analysis revealed that increasing the thickness of the bridge flanks significantly reduces ablation within the bridge region during the electrical explosion. The refinement of the design led to the adoption of a bridge flank thickness of 19 µm, with the bridge area dimensions specified as 0.25 mm × 0.25 mm × 4 µm. This bridge-wing-thickened EFI chip was produced by employing micro-electro-mechanical systems (MEMS) technology and underwent rigorous performance evaluations. The empirical results closely matched the computational predictions, thereby corroborating the precision of the proposed model in simulating the temperature distribution seen during the explosion process. Notably, this enhanced EFI design achieves a flyer velocity of 3800 m/s at a condition of 900 V/0.22 µF, signifying a significant advancement in EFI system efficiency and performance.

14.
Chem Commun (Camb) ; 60(50): 6423-6426, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38832901

RESUMEN

Self-supported Ru-doped NiMoO4 (Ru-NiMoO4) is synthesized on commercial NiMo foam. The Ru-NiMoO4 exhibits extremely high performance for electrocatalytic hydrogen evolution with a small overpotential of 170.6 mV to afford a current density of 1000 mA cm-2, and excellent durability for 150 hours in alkaline solution.

15.
Exp Gerontol ; 195: 112543, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128688

RESUMEN

BACKGROUND: Facet joint osteoarthritis (FJOA) is a prevalent condition contributing to low back pain, particularly in the elderly population. This study aimed to investigate the potential role of Cytokine Receptor-like Factor 1 (CRLF1) in FJOA pathogenesis and its therapeutic implications. METHODS: Bioinformatics analysis was utilized to identify CRLF1 as the target gene, followed by quantification of CRLF1 expression levels and joint degeneration degree using immunohistochemistry (IHC). In primary chondrocytes, the inhibition of CRLF1 expression by siRNA was performed, and Western blot analysis was conducted to evaluate the involvement of the extracellular matrix and MAPK/ERK signaling pathway. Flow cytometry was employed to assess the apoptosis rate of chondrocytes, while immunofluorescence (IF) was utilized to evaluate the localization of CRLF1, cleaved-caspase3, MMP13, COL2A1, and ERK. RESULTS: The expression of CRLF1 was found to be significantly elevated in FJOA tissues compared to normal tissues. Through the use of loss-of-function assays, it was determined that CRLF1 not only enhanced the rate of apoptosis in chondrocytes, but also facilitated the degradation of the extracellular matrix in vitro. Furthermore, CRLF1 was found to activate the ERK1/2 pathways. The pro-arthritic effects elicited by CRLF1 were mitigated by treatment with the MEK inhibitor U0126 in chondrocytes. CONCLUSION: These results suggest that CRLF1 enhances chondrocytes apoptosis and extracellular matrix degration in FJOA and thus may therefore be a potential therapeutic target for FJOA.


Asunto(s)
Apoptosis , Condrocitos , Osteoartritis , Articulación Cigapofisaria , Condrocitos/metabolismo , Condrocitos/patología , Humanos , Osteoartritis/metabolismo , Osteoartritis/patología , Articulación Cigapofisaria/patología , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Matriz Extracelular/metabolismo , Femenino , Anciano , Butadienos/farmacología , Nitrilos/farmacología , Células Cultivadas , Persona de Mediana Edad , Receptores de Citocinas
16.
Sci Rep ; 14(1): 16776, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039187

RESUMEN

There is a complex high-dimensional nonlinear mapping relationship between the compressive strength of High-Performance Concrete (HPC) and its components, which has great influence on the accurate prediction of compressive strength. In this paper, an efficient robust software calculation strategy combining BP Neural Network (BPNN), Support Vector Machine (SVM) and Genetic Algorithm (GA) is proposed for the prediction of compressive strength of HPC. 8 features were extracted from the previous literature, and a compressive strength database containing 454 sets of data was constructed. The model was trained and tested, and the performance of 4 Machine Learning (ML) models, namely BPNN, SVM, GA-BPNN and GA-SVM, was compared. The results show that the coupled model is superior to the single model. Moreover, because GA-SVM has better generalization ability and theoretical basis, its convergence speed and prediction accuracy are better than GA-BPNN. Then Grey Relational Analysis (GRA) and Shapley analysis were used to verify the interpretability of the GA-SVM model, which showed that the water-binder ratio had the most significant influence on the compressive strength. Finally, the combination of multiple input variables to evaluate the compressive strength supplemented this research, and again verified the significant influence of water-binder ratio, providing reference value for subsequent research.

17.
Microorganisms ; 12(1)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276201

RESUMEN

The rumen is divided into multiple rumen sacs based on anatomical structure, and each has its unique physiological environment. Tarim wapiti preserved roughage tolerance after domestication, and adaptation to the desertified environment led to the development of a unique rumen shape and intraruminal environment. In this work, six Tarim wapiti were chosen and tested for fermentation parameters, microbes, and histomorphology in four rumen areas (Dorsal sac, DS; Ventral sac, VS; Caudodorsal blind sac, CDBS; Caudoventral blind sac, CVBS). Tarim wapiti's rumen blind sac had better developed rumen histomorphology, the ventral sac was richer in VFAs, and the dominant bacteria varied most notably in the phylum Firmicutes, which was enriched in the caudoventral blind sac. The ventral sac biomarkers focused on carbohydrate fermentation-associated bacteria, the dorsal sac focused on N recycling, and the caudoventral blind sac identified the only phylum-level bacterium, Firmicutes; we were surprised to find a probiotic bacterium, Bacillus clausii, identified as a biomarker in the ventral sac. This research provides a better understanding of rumen fermentation parameters, microorganisms, and histomorphology in the Tarim wapiti rumen within a unique ecological habitat, laying the groundwork for future regulation targeting the rumen microbiota and subsequent animal production improvement.

18.
Exp Ther Med ; 27(5): 201, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38590580

RESUMEN

Osteoarthritis (OA) is a low-grade, nonspecific inflammatory disease that affects the entire joint. This condition is characterized by synovitis, cartilage erosion, subchondral bone defects, and subpatellar fat pad damage. There is mounting evidence demonstrating the significance of crosstalk between synovitis and cartilage destruction in the development of OA. To comprehensively explore the phenotypic alterations of synovitis and cartilage destruction, it is important to elucidate the crosstalk mechanisms between chondrocytes and synovial cells. Furthermore, the updated iteration of single-cell sequencing technology reveals the interaction between chondrocyte and synovial cells. In the present review, the histological and pathological alterations between cartilage and synovium during OA progression are described, and the mode of interaction and molecular mechanisms between synovial cells and chondrocytes in OA, both of which affect the OA process mainly by altering the inflammatory environment and cellular state, are elucidated. Finally, the current OA therapeutic approaches are summarized and emerging therapeutic targets are reviewed in an attempt to provide potential insights into OA treatment.

19.
J Korean Neurosurg Soc ; 67(3): 364-375, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720546

RESUMEN

OBJECTIVE: Kinesin family member C1 (KIFC1), a non-essential kinesin-like motor protein, has been found to serve a crucial role in supernumerary centrosome clustering and the progression of several human cancer types. However, the role of KIFC1 in glioma has been rarely reported. Thus, the present study aimed to investigate the role of KIFC1 in glioma progression. METHODS: Online bioinformatics analysis was performed to determine the association between KIFC1 expression and clinical outcomes in glioma. Immunohistochemical staining was conducted to analyze the expression levels of KIFC1 in glioma and normal brain tissues. Furthermore, KIFC1 expression was knocked in the glioma cell lines, U251 and U87MG, and the functional roles of KIFC1 in cell proliferation, invasion and migration were analyzed using cell multiplication, wound healing and Transwell invasion assays, respectively. The autophagic flux and expression levels matrix metalloproteinase-2 (MMP2) were also determined using imaging flow cytometry, western blotting and a gelation zymography assay. RESULTS: The results revealed that KIFC1 expression levels were significantly upregulated in glioma tissues compared with normal brain tissues, and the expression levels were positively associated with tumor grade. Patients with glioma with low KIFC1 expression levels had a more favorable prognosis compared with patients with high KIFC1 expression levels. In vitro, KIFC1 knockdown not only inhibited the proliferation, migration and invasion of glioma cells, but also increased the autophagic flux and downregulated the expression levels of MMP2. CONCLUSION: Upregulation of KIFC1 expression may promote glioma progression and KIFC1 may serve as a potential prognostic biomarker and possible therapeutic target for glioma.

20.
Sci Total Environ ; 949: 175069, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39079632

RESUMEN

Pentachlorophenol (PCP) is widely found in coastal environments and has various adverse effects, and its potential impact on coral reef ecosystems concerning. The scleractinian coral Montipora digitata was used for PCP stress experiments in this study. Phenotypes, physiological indicators, microbial diversity analysis and RNA sequencing were used to investigate the mechanisms underlying the responses of corals to acute and chronic PCP exposure. After 96 h of acute exposure, coral bleaching occurred at 1000 µg/LPCP and there was a significant decrease in Symbiodiniaceae density, Fv/Fm, and chlorophyll a content. Exposure to different concentrations of PCP significantly increased the content of malondialdehyde (MDA), leading to oxidative stress in corals. Chronic PCP exposure resulted in bleaching at 60 days, with the Fv/Fm significantly reduced to 0.461. Microbial diversity analysis revealed an increase in the abundance of potential pathogens, such as Vibrio, during acute PCP exposure and the emergence of the degrading bacterium Delftia during chronic PCP exposure. Transcriptional analysis showed that PCP exposure caused abnormal carbohydrate and amino acid metabolism in zooxanthella, which affected energy supply, induced immune responses, and disrupted symbiotic relationships. Corals respond to injury by boosting the expression of genes associated with signal transduction and immune response. Additionally, the expression of genes associated with environmental adaptation increased with chronic PCP exposure, which is consistent with the results of the microbial diversity analysis. These results indicate that PCP exposure might affect the balance of coral- zooxanthellae symbiosis in the stony coral M. digitata, impairing coral health and leading to bleaching.


Asunto(s)
Antozoos , Arrecifes de Coral , Pentaclorofenol , Contaminantes Químicos del Agua , Antozoos/fisiología , Antozoos/efectos de los fármacos , Pentaclorofenol/toxicidad , Animales , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA