Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Intervalo de año de publicación
1.
Trends Genet ; 39(10): 721-723, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37516623

RESUMEN

There is growing evidence that the microbiome influences host phenotypic variation. Incorporating information about the holobiont - the host and its microbiome - into genomic prediction models may accelerate genetic improvements in farmed animal populations. Importantly, these models must account for the indirect effects of the host genome on microbiome-mediated phenotypes.


Asunto(s)
Microbiota , Animales , Microbiota/genética , Genoma/genética , Genómica , Fenotipo , Modelos Genéticos
2.
BMC Genomics ; 25(1): 565, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840101

RESUMEN

BACKGROUND: Expansion of genomic resources for the Pacific white shrimp (Litopenaeus vannamei), such as the construction of dense genetic linkage maps, is crucial for the application of genomic tools in order to improve economically relevant traits. Sexual dimorphism exists in Pacific white shrimp, and the mapping of the sex-determination region in this species may help in future reproductive applications. We have constructed male, female, and sex-averaged high-density genetic maps using a 50 K single-nucleotide polymorphism (SNP) array, followed by a genome-wide association study (GWAS) to identify genomic regions associated with sex in white shrimp. RESULTS: The genetic map yielded 15,256 SNPs assigned to 44 linkage groups (LG). The lengths of the male, female, and sex-averaged maps were 5,741.36, 5,461.20 and 5,525.26 cM, respectively. LG18 was found to be the largest for both sexes, whereas LG44 was the shortest for males and LG31 for females. A sex-determining region was found in LG31 with 21 statistically significant SNPs. The most important SNP was previously identified as a sex-linked marker and was able to identify 99% of the males and 88% of the females. Although other significant markers had a lower ability to determine sex, putative genes were intercepted or close to them. The oplophorus-luciferin 2-monooxygenase, serine/arginine repetitive matrix protein and spermine oxidase genes were identified as candidates with possible participation in important processes of sexual differentiation in shrimp. CONCLUSIONS: Our results provide novel genomic resources for shrimp, including a high-density linkage map and new insights into the sex-determining region in L. vannamei, which may be usefulfor future genetics and reproduction applications.


Asunto(s)
Mapeo Cromosómico , Penaeidae , Polimorfismo de Nucleótido Simple , Procesos de Determinación del Sexo , Animales , Penaeidae/genética , Femenino , Masculino , Procesos de Determinación del Sexo/genética , Ligamiento Genético , Estudio de Asociación del Genoma Completo
3.
Mol Biol Rep ; 50(1): 599-607, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36367660

RESUMEN

BACKGROUND: Tambaqui, Colossoma macropomum, is the most important native fish species farmed in South America, particularly in Brazil, where its production is limited in the southern and southeastern regions due to disease outbreaks caused by the parasite Ichthyophthirius multifiliis. Therefore, genome level analysis to understand the genetic architecture of the host resistance against I. multifiliis is fundamental to improve this trait in tambaqui. The objective of the present study was to map QTL (quantitative trait loci) associated with resistance to I. multifiliis in tambaqui by GWAS (genome-wide association study). METHODS AND RESULTS: Individuals belonging to seven families, which were previously submitted to an experimental challenge to assess the natural resistance to the parasite I. multifiliis, were used for genomic analysis. A total of 7717 SNPs were identified in this population by ddRAD (double digest restriction site associated DNA). GWAS revealed four SNPs significantly associated in the LGs (linkage groups) 2, 9, 11 and 20 for the traits time of death and parasite load. The SNPs explained a low proportion of the variance to I. multifiliis resistance for time of death and parasite load (about 0.622% and 0.375%, respectively). The SNPs were close to 11 genes related to the immune system: abcf3, znf830, ccr9, gli3, ackr4, tbata, ndr2, tgfbr3, nhej1, znf644b, and cldn10a. CONCLUSIONS: In conclusion, the resistance to I. multifiliis is probably under polygenic control in tambaqui, in which different QTLs of low variance can be involved in the immune responses against this ectoparasite.


Asunto(s)
Characiformes , Enfermedades de los Peces , Animales , Estudio de Asociación del Genoma Completo , Characiformes/genética , Sitios de Carácter Cuantitativo/genética , Polimorfismo de Nucleótido Simple/genética , Brasil , Enfermedades de los Peces/genética
4.
Genomics ; 114(6): 110503, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36244592

RESUMEN

Salmon rickettsial septicaemia (SRS), caused by the bacteria Piscirickettsia salmonis (P. salmonis), is responsible for significant mortality in farmed Atlantic salmon in Chile. Currently there are no effective treatments or preventive measures for this disease, although genetic selection or genome engineering to increase salmon resistance to SRS are promising strategies. The accuracy and efficiency of these strategies are usually influenced by the available biological background knowledge of the disease. The aim of this study was to investigate DNA methylation changes in response to P. salmonis infection in the head kidney and liver tissue of Atlantic salmon, and the interaction between gene expression and DNA methylation in the same tissues. The head kidney and liver methylomes of 66 juvenile salmon were profiled using reduced representation bisulphite sequencing (RRBS), and compared between P. salmonis infected animals (3 and 9 days post infection) and uninfected controls, and between SRS resistant and susceptible fish. Methylation was correlated with matching RNA-Seq data from the same animals, revealing that methylation in the first exon leads to an important repression of gene expression. Head kidney methylation showed a clear response to the infection, associated with immunological processes such as actin cytoskeleton regulation, phagocytosis, endocytosis and pathogen associated pattern receptor signaling. Our results contribute to the growing understanding of the role of methylation in regulation of gene expression and response to infectious diseases and could inform the incorporation of epigenetic markers into genomic selection for disease resistant and the design of diagnostic epigenetic markers to better manage fish health in salmon aquaculture.


Asunto(s)
Salmo salar , Animales , Salmo salar/genética , Metilación de ADN , Genómica , Epigenómica
5.
Genomics ; 113(5): 3395-3404, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34339816

RESUMEN

Domestication processes and artificial selection are likely to leave signatures that can be detected at a molecular level in farmed rainbow trout (Oncorhynchus mykiss). These signatures of selection are genomic regions that contain functional genetic variants conferring a higher fitness to their bearers. We genotyped 749 rainbow trout from a commercial population using a rainbow trout Axiom 57 K SNP array panel and identified putative genomic regions under selection using the pcadapt, Composite Likelihood Ratio (CLR) and Integrated Haplotype Score (iHS) methods. After applying quality-control pipelines and statistical analyses, we detected 12, 96 and 16 SNPs putatively under selection, associated with 96, 781 and 115 candidate genes, respectively. Several of these candidate genes were associated with growth, early development, reproduction, behavior and immune system traits. In addition, some of the SNPs were found in interesting regions located in autosomal inversions on Omy05 and Omy20. These findings could represent a genome-wide map of selection signatures in farmed rainbow trout and could be important in explaining domestication and selection for genetic traits of commercial interest.


Asunto(s)
Oncorhynchus mykiss , Animales , Genoma , Estudio de Asociación del Genoma Completo , Genotipo , Oncorhynchus mykiss/genética , Polimorfismo de Nucleótido Simple
6.
BMC Genomics ; 22(1): 57, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33451291

RESUMEN

BACKGROUND: Body traits are generally controlled by several genes in vertebrates (i.e. polygenes), which in turn make them difficult to identify through association mapping. Increasing the power of association studies by combining approaches such as genotype imputation and multi-trait analysis improves the ability to detect quantitative trait loci associated with polygenic traits, such as body traits. RESULTS: A multi-trait genome-wide association study (mtGWAS) was performed to identify quantitative trait loci (QTL) and genes associated with body traits in Nile tilapia (Oreochromis niloticus) using genotypes imputed to whole-genome sequences (WGS). To increase the statistical power of mtGWAS for the detection of genetic associations, summary statistics from single-trait genome-wide association studies (stGWAS) for eight different body traits recorded in 1309 animals were used. The mtGWAS increased the statistical power from the original sample size from 13 to 44%, depending on the trait analyzed. The better resolution of the WGS data, combined with the increased power of the mtGWAS approach, allowed the detection of significant markers which were not previously found in the stGWAS. Some of the lead single nucleotide polymorphisms (SNPs) were found within important functional candidate genes previously associated with growth-related traits in other terrestrial species. For instance, we identified SNP within the α1,6-fucosyltransferase (FUT8), solute carrier family 4 member 2 (SLC4A2), A disintegrin and metalloproteinase with thrombospondin motifs 9 (ADAMTS9) and heart development protein with EGF like domains 1 (HEG1) genes, which have been associated with average daily gain in sheep, osteopetrosis in cattle, chest size in goats, and growth and meat quality in sheep, respectively. CONCLUSIONS: The high-resolution mtGWAS presented here allowed the identification of significant SNPs, linked to strong functional candidate genes, associated with body traits in Nile tilapia. These results provide further insights about the genetic variants and genes underlying body trait variation in cichlid fish with high accuracy and strong statistical support.


Asunto(s)
Cíclidos , Estudio de Asociación del Genoma Completo , Animales , Bovinos , Cíclidos/genética , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Ovinos
7.
BMC Genomics ; 22(1): 156, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676414

RESUMEN

BACKGROUND: Salmon Rickettsial Syndrome (SRS), caused by Piscirickettsia salmonis, is one of the primary causes of morbidity and mortality in Atlantic salmon aquaculture, particularly in Chile. Host resistance is a heritable trait, and functional genomic studies have highlighted genes and pathways important in the response of salmon to the bacteria. However, the functional mechanisms underpinning genetic resistance are not yet well understood. In the current study, a large population of salmon pre-smolts were challenged with P. salmonis, with mortality levels recorded and samples taken for genotyping. In parallel, head kidney and liver samples were taken from animals of the same population with high and low genomic breeding values for resistance, and used for RNA-Sequencing to compare their transcriptome profile both pre and post infection. RESULTS: A significant and moderate heritability (h2 = 0.43) was shown for the trait of binary survival. Genome-wide association analyses using 38 K imputed SNP genotypes across 2265 animals highlighted that resistance is a polygenic trait. Several thousand genes were identified as differentially expressed between controls and infected samples, and enriched pathways related to the host immune response were highlighted. In addition, several networks with significant correlation with SRS resistance breeding values were identified, suggesting their involvement in mediating genetic resistance. These included apoptosis, cytoskeletal organisation, and the inflammasome. CONCLUSIONS: While resistance to SRS is a polygenic trait, this study has highlighted several relevant networks and genes that are likely to play a role in mediating genetic resistance. These genes may be future targets for functional studies, including genome editing, to further elucidate their role underpinning genetic variation in host resistance.


Asunto(s)
Enfermedades de los Peces , Salmo salar , Animales , Enfermedades de los Peces/genética , Estudio de Asociación del Genoma Completo , Piscirickettsia , Salmo salar/genética , Análisis de Secuencia de ARN
8.
BMC Genomics ; 21(1): 672, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993504

RESUMEN

BACKGROUND: Pacu (Piaractus mesopotamicus) is one of the most important Neotropical aquaculture species from South America. Disease outbreaks caused by Aeromonas hydrophila infection have been considered significant contributors to the declining levels of pacu production. The current implementation of genomic selection for disease resistance has been adopted as a powerful strategy for improvement in fish species. This study aimed to investigate the genetic architecture of resistance to A. hydrophila in pacu via Genome-Wide Association Study (GWAS), the identification of suggestive Quantitative Trait Loci (QTLs) and putative genes associated with this trait. The genetic data were obtained from 381 juvenile individuals belonging to 14 full-sibling families. An experimental challenge was performed to gain access to the levels of genetic variation for resistance against the bacteria using the following trait definitions: binary test survival (TS) and time of death (TD). RESULTS: The analyses of genetic parameters estimated moderate heritability (h2) for both resistance traits: 0.20 (± 0.09) for TS and 0.35 (± 0.15) for TD. A linkage map for pacu was developed to enable the GWAS, resulting in 27 linkage groups (LGs) with 17,453 mapped Single Nucleotide Polymorphisms (SNPs). The length of the LGs varied from 79.95 (LG14) to 137.01 (LG1) cM, with a total map length of 2755.60 cM. GWAS identified 22 putative QTLs associated to A. hydrophila resistance. They were distributed into 17 LGs, and were considered suggestive genomic regions explaining > 1% of the additive genetic variance (AGV) for the trait. Several candidate genes related to immune response were located close to the suggestive QTLs, such as tbk1, trim16, Il12rb2 and lyz2. CONCLUSION: This study describes the development of the first medium density linkage map for pacu, which will be used as a framework to study relevant traits to the production of this species. In addition, the resistance to A. hydrophila was found to be moderately heritable but with a polygenic architecture suggesting that genomic selection, instead of marker assisted selection, might be useful for efficiently improving resistance to one of the most problematic diseases that affects the South American aquaculture.


Asunto(s)
Characiformes/genética , Resistencia a la Enfermedad , Enfermedades de los Peces/genética , Infecciones por Bacterias Gramnegativas/genética , Polimorfismo de Nucleótido Simple , Aeromonas hydrophila/patogenicidad , Animales , Characiformes/inmunología , Characiformes/microbiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Ligamiento Genético , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Sitios de Carácter Cuantitativo
9.
J Fish Dis ; 43(1): 139-146, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31724200

RESUMEN

Infectious pancreatic necrosis virus (IPNV) is the aetiological agent of a highly contagious disease that affects farmed salmonids. IPNV isolates have been phylogenetically classified into eight genogroups, of which two are present in Chile, genogroups 1 and 5. Here, we compare the mortality rate caused by isolates from both genogroups in rainbow trout (Oncorhynchus mykiss) fry to determine if there is an association between host susceptibility and phylogenetic characterization of IPNV. Fish were challenged by immersion with one of four isolates (two for each genogroup), and mortality curves were assessed after 30 days. Viral load was measured in all mortalities and in live fish sampled at 1, 7 and 20 days post-infection. Although mortality was low throughout the challenge, differences were found between fish infected with different isolates. Both isolates from genogroup 1 caused greater cumulative mortalities than either of the isolates from genogroup 5. When combined, the overall mortality rate of fish challenged with genogroup 1 isolates was significantly higher than those infected with genogroup 5. However, viral load was lower on trout infected with genogroup 1 isolates. These results suggest that rainbow trout are more susceptible to IPNV isolates from genogroup 1 than genogroup 5.


Asunto(s)
Infecciones por Birnaviridae/veterinaria , Enfermedades de los Peces/mortalidad , Virus de la Necrosis Pancreática Infecciosa/fisiología , Oncorhynchus mykiss , Carga Viral/veterinaria , Animales , Infecciones por Birnaviridae/mortalidad , Infecciones por Birnaviridae/virología , Chile/epidemiología , Enfermedades de los Peces/virología , Genotipo , Virus de la Necrosis Pancreática Infecciosa/genética , Filogenia
10.
Genomics ; 111(2): 127-132, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29357303

RESUMEN

The aim of this study was to compare the accuracy of breeding values (EBVs) predicted using the traditional pedigree based Best Linear Unbiased Prediction (PBLUP) and the single-step genomic Best Linear Unbiased Prediction (ssGBLUP) for resistance against infectious pancreatic necrosis virus (IPNV) in rainbow trout. A total of 2278 animals were challenged against IPNV and 768 individuals were genotyped using a 57 K single nucleotide polymorphism array for rainbow trout. Accuracies for both methods were assessed using five-fold cross-validation. The heritabilities were higher for PBLUP compared to ssGBLUP. The ssGBLUP accuracies outperformed PBLUP in 7 and 11% for days to death and binary survival, respectively. The ssGBLUP could be an alternative approach to improve the accuracy of breeding values for resistance against infectious pancreatic necrosis virus in rainbow trout, using information from genotyped and non-genotyped animals.


Asunto(s)
Infecciones por Birnaviridae/genética , Resistencia a la Enfermedad , Enfermedades de los Peces/genética , Estudio de Asociación del Genoma Completo/métodos , Selección Artificial , Trucha/genética , Animales , Infecciones por Birnaviridae/inmunología , Enfermedades de los Peces/inmunología , Estudio de Asociación del Genoma Completo/normas , Virus de la Necrosis Pancreática Infecciosa/patogenicidad , Trucha/virología
11.
Sep Purif Technol ; 203: 178-184, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30319308

RESUMEN

Antibiotics are a key pharmaceutical to inhibit growth or kill microorganisms. They represent a profitable market and, in particular, tetracycline has been listed as an essential medicine by the WHO. Therefore it is important to improve their production processes. Recently novel and traditional aqueous two-phase systems for the extraction have been developed with positive results. The present work performs an economic analysis of the production and recovery of tetracycline through the use of several ATPS through bioprocess modeling using specialized software (BioSolve, Biopharm Services Ltd, UK) to determine production costs per gram (CoG/g). First, a virtual model was constructed using published data on the recovery of tetracycline and extended to incorporate uncertainties. To determine how the model behaved, a sensitivity analysis and Monte Carlo simulations were performed. Results showed that ATPS formed by cholinium chloride/K3PO4 was the best option to recover tetracycline, as it had the lowest CoG/g (US$ 672.83/g), offered the highest recovery yield (92.42%), second best sample input capacity (45% of the ATPS composition) and one of the lowest materials contribution to cost. The ionic liquid-based method of ATPS is a promising alternative for recovering tetracycline from fermentation broth.

12.
BMC Genomics ; 18(1): 121, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28143402

RESUMEN

BACKGROUND: Salmon Rickettsial Syndrome (SRS) caused by Piscirickettsia salmonis is a major disease affecting the Chilean salmon industry. Genomic selection (GS) is a method wherein genome-wide markers and phenotype information of full-sibs are used to predict genomic EBV (GEBV) of selection candidates and is expected to have increased accuracy and response to selection over traditional pedigree based Best Linear Unbiased Prediction (PBLUP). Widely used GS methods such as genomic BLUP (GBLUP), SNPBLUP, Bayes C and Bayesian Lasso may perform differently with respect to accuracy of GEBV prediction. Our aim was to compare the accuracy, in terms of reliability of genome-enabled prediction, from different GS methods with PBLUP for resistance to SRS in an Atlantic salmon breeding program. Number of days to death (DAYS), binary survival status (STATUS) phenotypes, and 50 K SNP array genotypes were obtained from 2601 smolts challenged with P. salmonis. The reliability of different GS methods at different SNP densities with and without pedigree were compared to PBLUP using a five-fold cross validation scheme. RESULTS: Heritability estimated from GS methods was significantly higher than PBLUP. Pearson's correlation between predicted GEBV from PBLUP and GS models ranged from 0.79 to 0.91 and 0.79-0.95 for DAYS and STATUS, respectively. The relative increase in reliability from different GS methods for DAYS and STATUS with 50 K SNP ranged from 8 to 25% and 27-30%, respectively. All GS methods outperformed PBLUP at all marker densities. DAYS and STATUS showed superior reliability over PBLUP even at the lowest marker density of 3 K and 500 SNP, respectively. 20 K SNP showed close to maximal reliability for both traits with little improvement using higher densities. CONCLUSIONS: These results indicate that genomic predictions can accelerate genetic progress for SRS resistance in Atlantic salmon and implementation of this approach will contribute to the control of SRS in Chile. We recommend GBLUP for routine GS evaluation because this method is computationally faster and the results are very similar with other GS methods. The use of lower density SNP or the combination of low density SNP and an imputation strategy may help to reduce genotyping costs without compromising gain in reliability.


Asunto(s)
Resistencia a la Enfermedad/genética , Genoma , Genómica , Salmo salar/genética , Selección Genética , Algoritmos , Animales , Teorema de Bayes , Cruzamiento , Estudios de Asociación Genética , Genómica/métodos , Genotipo , Modelos Genéticos , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Reproducibilidad de los Resultados , Salmo salar/microbiología
13.
Genet Sel Evol ; 49(1): 15, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28143593

RESUMEN

Sea lice infestations caused by Caligus rogercresseyi are a main concern to the salmon farming industry due to associated economic losses. Resistance to this parasite was shown to have low to moderate genetic variation and its genetic architecture was suggested to be polygenic. The aim of this study was to compare accuracies of breeding value predictions obtained with pedigree-based best linear unbiased prediction (P-BLUP) methodology against different genomic prediction approaches: genomic BLUP (G-BLUP), Bayesian Lasso, and Bayes C. To achieve this, 2404 individuals from 118 families were measured for C. rogercresseyi count after a challenge and genotyped using 37 K single nucleotide polymorphisms. Accuracies were assessed using fivefold cross-validation and SNP densities of 0.5, 1, 5, 10, 25 and 37 K. Accuracy of genomic predictions increased with increasing SNP density and was higher than pedigree-based BLUP predictions by up to 22%. Both Bayesian and G-BLUP methods can predict breeding values with higher accuracies than pedigree-based BLUP, however, G-BLUP may be the preferred method because of reduced computation time and ease of implementation. A relatively low marker density (i.e. 10 K) is sufficient for maximal increase in accuracy when using G-BLUP or Bayesian methods for genomic prediction of C. rogercresseyi resistance in Atlantic salmon.


Asunto(s)
Cruzamiento , Genoma , Genómica , Modelos Genéticos , Phthiraptera/genética , Salmo salar/genética , Algoritmos , Animales , Estudios de Asociación Genética , Genómica/métodos , Genotipo , Fenotipo , Reproducibilidad de los Resultados
14.
BMC Vet Res ; 12(1): 158, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27464952

RESUMEN

BACKGROUND: Mastitis resistance is a complex and multifactorial trait, and its expression depends on both genetic and environmental factors, including infection pressure. The objective of this research was to determine the genetic basis of mastitis resistance to specific pathogens using a repeatability threshold probit animal model. RESULTS: The most prevalent isolated pathogens were coagulase-negative staphylococci (CNS); 39 % of records and 77 % of the animals infected at least one time in the whole period of study. There was significant genetic variation only for Streptococci (STR). In addition, there was a positive genetic correlation between STR and all pathogens together (ALL) (0.36 ± 0.22), and CNS and ALL (0.92 ± 0.04). CONCLUSION: The results of our study support the presence of significant genetic variation for mastitis caused by Streptococci and suggest the importance of discriminating between different pathogens causing mastitis due to the fact that they most likely influence different genetic traits. Low heritabilities for pathogen specific-mastitis resistance may be considered when including bacteriological status as a measure of mastitis presence to implement breeding strategies for improving udder health in dairy ewes.


Asunto(s)
Resistencia a la Enfermedad/genética , Variación Genética , Mastitis/veterinaria , Enfermedades de las Ovejas/genética , Enfermedades de las Ovejas/microbiología , Infecciones Estreptocócicas/veterinaria , Animales , Cruzamiento , Industria Lechera , Femenino , Mastitis/genética , Mastitis/microbiología , Mastitis/prevención & control , Ovinos , Enfermedades de las Ovejas/prevención & control , Infecciones Estreptocócicas/genética , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/prevención & control , Streptococcus/genética , Streptococcus/aislamiento & purificación
15.
BMC Genomics ; 16: 854, 2015 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-26499328

RESUMEN

BACKGROUND: Pisciricketssia salmonis is the causal agent of Salmon Rickettsial Syndrome (SRS), which affects salmon species and causes severe economic losses. Selective breeding for disease resistance represents one approach for controlling SRS in farmed Atlantic salmon. Knowledge concerning the architecture of the resistance trait is needed before deciding on the most appropriate approach to enhance artificial selection for P. salmonis resistance in Atlantic salmon. The purpose of the study was to dissect the genetic variation in the resistance to this pathogen in Atlantic salmon. METHODS: 2,601 Atlantic salmon smolts were experimentally challenged against P. salmonis by means of intra-peritoneal injection. These smolts were the progeny of 40 sires and 118 dams from a Chilean breeding population. Mortalities were recorded daily and the experiment ended at day 40 post-inoculation. Fish were genotyped using a 50K Affymetrix® Axiom® myDesignTM Single Nucleotide Polymorphism (SNP) Genotyping Array. A Genome Wide Association Analysis was performed on data from the challenged fish. Linear regression and logistic regression models were tested. RESULTS: Genome Wide Association Analysis indicated that resistance to P. salmonis is a moderately polygenic trait. There were five SNPs in chromosomes Ssa01 and Ssa17 significantly associated with the traits analysed. The proportion of the phenotypic variance explained by each marker is small, ranging from 0.007 to 0.045. Candidate genes including interleukin receptors and fucosyltransferase have been found to be physically linked with these genetic markers and may play an important role in the differential immune response against this pathogen. CONCLUSIONS: Due to the small amount of variance explained by each significant marker we conclude that genetic resistance to this pathogen can be more efficiently improved with the implementation of genetic evaluations incorporating genotype information from a dense SNP array.


Asunto(s)
Cromosomas , Resistencia a la Enfermedad/genética , Enfermedades de los Peces/genética , Enfermedades de los Peces/microbiología , Estudio de Asociación del Genoma Completo , Piscirickettsia , Sitios de Carácter Cuantitativo , Salmo salar/genética , Salmo salar/microbiología , Alelos , Animales , Enfermedades de los Peces/mortalidad , Frecuencia de los Genes , Estudios de Asociación Genética , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable
16.
Fish Shellfish Immunol ; 45(2): 367-77, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25910847

RESUMEN

Infectious salmon anaemia virus (ISAV) is an orthomyxovirus causing high mortality in farmed Atlantic salmon (Salmo salar). The collective data from the Atlantic salmon-ISAV interactions, performed "in vitro" using various salmon cell lines and "in vivo" fish infected with different ISAV isolates, have shown a strong regulation of immune related transcripts during the infection. Despite this strong defence response, the majority of fish succumb to infections with ISAV. The deficient protection of the host against ISAV is in part due to virulence factors of the virus, which allow evade the host-defence machinery. As such, the viral replication is uninhibited and viral loads quickly spread to several tissues causing massive cellular damage before the host can develop an effective cell-mediated and humoral outcome. To interrogate the correlation of the viral replication with the host defence response, we used fish that have been infected by cohabitation with ISAV-injected salmons. Whole gene expression patterns were measured with RNA-seq using RNA extracted from Head-kidney, Liver and Gills. The results show divergent mRNA abundance of functional modules related to interferon pathway, adaptive/innate immune response and cellular proliferation/differentiation. Furthermore, gene regulation in distinct tissues during the infection process was independently controlled within the each tissue and the observed mRNA expression suggests high modulation of the ISAV-segment transcription. Importantly this is the first time that strong correlations between functional modules containing significant immune process with protein-protein affinities and viral-segment transcription have been made between different tissues of ISAV-infected fish.


Asunto(s)
Inmunidad Adaptativa , Enfermedades de los Peces/inmunología , Inmunidad Innata , Isavirus/fisiología , Infecciones por Orthomyxoviridae/veterinaria , Salmo salar , Animales , Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Perfilación de la Expresión Génica/veterinaria , Regulación de la Expresión Génica , Branquias/inmunología , Riñón Cefálico/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Hígado/inmunología , Especificidad de Órganos , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología
17.
Front Genet ; 14: 1128943, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091808

RESUMEN

Background: Cobia (Rachycentron canadum) is a species of fish with high commercial potential particularly due to fast growth rates. The evidence of sexual size dimorphism favoring females indicate potential benefits in having a monosex culture. However, the involvement of genetic factors responsible for sexual development and gonadal maintenance that produces phenotypic sex in cobia is largely unknown. Methods: In the present study, we performed transcriptome sequencing of cobia to identify sex-biased significantly differentially expressed genes (DEGs) in testes and ovaries. The reliability of the gonad transcriptome data was validated by qPCR analysis of eight selected significantly differential expressed sex-related candidate genes. Results: This comparative gonad transcriptomic analysis revealed that 7,120 and 4,628 DEGs are up-regulated in testes or ovaries, respectively. Further functional annotation analyses identified 76 important candidate genes involved in sex determination cascades or sex differentiation, including 42 known testis-biased DEGs (dmrt1, amh and sox9 etc.), and 34 known ovary-biased DEGs (foxl2, sox3 and cyp19a etc.). Moreover, eleven significantly enriched pathways functionally related to sex determination and sex differentiation were identified, including Wnt signaling pathway, oocyte meiosis, the TGF-beta signaling pathway and MAPK signaling pathway. Conclusion: This work represents the first comparative gonad transcriptome study in cobia. The putative sex-associated DEGs and pathways provide an important molecular basis for further investigation of cobia's sex determination, gonadal development as well as potential control breeding of monosex female populations for a possible aquaculture setting.

18.
G3 (Bethesda) ; 13(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36966413

RESUMEN

Dense single nucleotide polymorphism (SNP) arrays are essential tools for rapid high-throughput genotyping for many genetic analyses, including genomic selection and high-resolution population genomic assessments. We present a high-density (200 K) SNP array developed for the Eastern oyster (Crassostrea virginica), which is a species of significant aquaculture production and restoration efforts throughout its native range. SNP discovery was performed using low-coverage whole-genome sequencing of 435 F1 oysters from families from 11 founder populations in New Brunswick, Canada. An Affymetrix Axiom Custom array was created with 219,447 SNPs meeting stringent selection criteria and validated by genotyping more than 4,000 oysters across 2 generations. In total, 144,570 SNPs had a call rate >90%, most of which (96%) were polymorphic and were distributed across the Eastern oyster reference genome, with similar levels of genetic diversity observed in both generations. Linkage disequilibrium was low (maximum r2 ∼0.32) and decayed moderately with increasing distance between SNP pairs. Taking advantage of our intergenerational data set, we quantified Mendelian inheritance errors to validate SNP selection. Although most of SNPs exhibited low Mendelian inheritance error rates overall, with 72% of called SNPs having an error rate of <1%, many loci had elevated Mendelian inheritance error rates, potentially indicating the presence of null alleles. This SNP panel provides a necessary tool to enable routine application of genomic approaches, including genomic selection, in C. virginica selective breeding programs. As demand for production increases, this resource will be essential for accelerating production and sustaining the Canadian oyster aquaculture industry.


Asunto(s)
Crassostrea , Humanos , Animales , Crassostrea/genética , Polimorfismo de Nucleótido Simple , Canadá , Genoma , Genómica
19.
G3 (Bethesda) ; 13(4)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36759939

RESUMEN

Coho salmon (Oncorhynchus kisutch) are a culturally and economically important species that return from multiyear ocean migrations to spawn in rivers that flow to the Northern Pacific Ocean. Southern stocks of coho salmon in Canada and the United States have significantly declined over the past quarter century, and unfortunately, conservation efforts have not reversed this trend. To assist in stock management and conservation efforts, we generated a chromosome-level genome assembly. We also resequenced the genomes of 83 coho salmon across the North American range to identify nucleotide variants and understand the demographic histories of these salmon by modeling effective population size from genome-wide data. From demographic history modeling, we observed reductions in effective population sizes between 3,750 and 8,000 years ago for several northern sampling sites, which may correspond to bottleneck events during recolonization after glacial retreat.


Asunto(s)
Oncorhynchus kisutch , Animales , Oncorhynchus kisutch/genética , Densidad de Población , Genoma
20.
Evol Appl ; 15(4): 537-552, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35505881

RESUMEN

Through imputation of genotypes, genome-wide association study (GWAS) and genomic prediction (GP) using whole-genome sequencing (WGS) data are cost-efficient and feasible in aquaculture breeding schemes. The objective was to dissect the genetic architecture of growth traits under chronic heat stress in rainbow trout (Oncorhynchus mykiss) and to assess the accuracy of GP based on imputed WGS and different preselected single nucleotide polymorphism (SNP) arrays. A total of 192 and 764 fish challenged to a heat stress experiment for 62 days were genotyped using a customized 1 K and 26 K SNP panels, respectively, and then, genotype imputation was performed from a low-density chip to WGS using 102 parents (36 males and 66 females) as the reference population. Imputed WGS data were used to perform GWAS and test GP accuracy under different preselected SNP scenarios. Heritability was estimated for body weight (BW), body length (BL) and average daily gain (ADG). Estimates using imputed WGS data ranged from 0.33 ± 0.05 to 0.55 ± 0.05 for growth traits under chronic heat stress. GWAS revealed that the top five cumulatively SNPs explained a maximum of 0.94%, 0.86% and 0.51% of genetic variance for BW, BL and ADG, respectively. Some important functional candidate genes associated with growth-related traits were found among the most important SNPs, including signal transducer and activator of transcription 5B and 3 (STAT5B and STAT3, respectively) and cytokine-inducible SH2-containing protein (CISH). WGS data resulted in a slight increase in prediction accuracy compared with pedigree-based method, whereas preselected SNPs based on the top GWAS hits improved prediction accuracies, with values ranging from 1.2 to 13.3%. Our results support the evidence of the polygenic nature of growth traits when measured under heat stress. The accuracies of GP can be improved using preselected variants from GWAS, and the use of WGS marginally increases prediction accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA