Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(35): 19120-19129, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524292

RESUMEN

This review describes recent progress of spectroelectrochemistry (SEC) analysis of single metallic nanoparticles (NPs) which have strong surface plasmon resonance properties. Dark-field scattering (DFS), photoluminescence (PL), and electrogenerated chemiluminescence (ECL) are three commonly used optical methods to detect individual NPs and investigate their local redox activities in an electrochemical cell. These SEC methods are highly dependent on a strong light-scattering cross-section of plasmonic metals and their electrocatalytic characteristics. The surface chemistry and the catalyzed reaction mechanism of single NPs and their chemical transformations can be studied using these SEC methods. Recent progress in the experimental design and fundamental understanding of single-NP electrochemistry and catalyzed reactions using DFS, PL, and ECL is described along with selected examples from recent publications in this field. Perspectives on the challenges and possible solutions for these SEC methods and potential new directions are discussed.

2.
ACS Appl Mater Interfaces ; 12(24): 27443-27452, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32407071

RESUMEN

Lead-based perovskite MAPbX3 (MA = CH3NH3, X = Cl and Br) has shown great potential benefits to advance modern optoelectronics and clean energy harvesting devices. Poor structural stability is one of the major challenges of MAPbX3 perovskite materials to overcome to achieve desired device performance. Here, we present the electrochemical stability study of CH3NH3PbCl1.08Br1.92 quantum dots (QDs) by electrogenerated chemiluminescence (ECL) and photoluminescence (PL) spectroelectrochemistry methods. Electrochemical anodization of pristine MAPbX3 QD film results in the disproportionate loss of methylammonium and halide ions (X = Cl and Br). ECL efficiency and stability of perovskite QDs in the presence of coreactant tripropyl amine (TPrA) can be greatly improved after being incorporated into a polystyrene (PS) matrix. Mass spectrum and X-ray photoelectron spectroscopy (XPS) measurements were used to provide chemical composition variation details of QDs, which are responsible for the ECL and PL characteristics (e.g., wavelength redshift) of perovskite QDs in an electrochemical cell.

3.
J Phys Chem Lett ; 11(9): 3488-3494, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32286830

RESUMEN

Control over photophysical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs) is the key to advance their applications in next-generation optoelectronics. Although chemical doping and surface modification with plasmonic metals have been reported to tune the photophysical and catalytic properties of 2D TMDs, there have been few reports of tuning optical properties using dynamic electrochemical control of electrode potential. Herein, we report (1) the photoluminescence (PL) enhancement and red-shift in the PL spectrum of 2D MoS2, synthesized by chemical vapor deposition and subsequent transfer onto an indium tin oxide electrode, upon electrochemical anodization and (2) spatial heterogeneities in its photoelectrochemical (PEC) activities. Spectroelectrochemistry shows that positive electrochemical bias causes an initial ten-fold increase in the PL intensity followed by a quick decrease in the enhancement. The PL enhancement and spectrum red-shift are associated with the decrease in nonradiative decay rates of excitons formed upon electrochemical anodization of 2D MoS2. Additionally, scanning electrochemical cell microscopy (SECCM) study shows that the 2D MoS2 crystal is spatially sensitive to PEC oxidation at positive potentials. SECCM also shows a photocurrent increase caused by spatially heterogeneous edge-type defect sites of the crystal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA