Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Ecotoxicol Environ Saf ; 278: 116396, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696872

RESUMEN

The success of the sodic soil reclamation using elemental S (S°) depends on the population of the native S° oxidizers. Augmenting the native flora of the sodic soils with effective S° oxidizers can enhance the success of the sodic soil reclamation. Present study reports for the first time the S° oxidation potential of the Sphingomonas olei strain 20UP7 isolated from sodic soils with pHs 9.8 and ECe 3.6 dS m-1. Inoculation with S. olei strain 20UP7 caused 13.0-24.2 % increase in S° oxidation in different sodic soils (pHs 9.1-10.5). It improved the concentration of the Ca2+, Mg2+, PO43- and declined the HCO3- and total alkalinity of the soil solution. This isolate also showed appreciable P and Zn solubilization, indole acetic acid, ammonia, and titratable acidity production in the growth media. It tended to the formation of biofilm around sulphur particles. The PCR amplification with gene-specific primers showed the occurrence of soxA, soxB, and soxY genes with a single band corresponding to length of 850, 460, and 360 base pairs, respectively. The integration of the S. olei strain 20UP7 with S° caused 21.7-25.4 % increase in the rice and wheat yield compared to the soil treated with S° alone. This study concludes that the S. olei, native to high saline-sodic soils can be utilized for improving the sodicity reclamation and plant growth promotion using elemental S based formulations.


Asunto(s)
Oxidación-Reducción , Microbiología del Suelo , Suelo , Suelo/química , Azufre/metabolismo , Sphingomonas , Concentración de Iones de Hidrógeno , Biopelículas/crecimiento & desarrollo , Desarrollo de la Planta/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Oryza/microbiología , Oryza/crecimiento & desarrollo , Contaminantes del Suelo
2.
Environ Res ; 216(Pt 2): 114559, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279917

RESUMEN

The amendments used for sodicity reclamation also profoundly influence P dynamics and leaching losses. This study characterized the effect of irrigation water quality on P dynamics and leaching from saline-sodic soil during reclamation utilizing gypsum alone or in combination with manure and city compost. Changes in properties of unleached and leached soils were fitted with labile P pools using redundancy analysis. The relation between leachate properties and P loss was explained by means of monitoring leachate properties up to ten pore volumes. During incubation, the water-extractable P (PH2O) concentration was greater than Olsen's P (PNaHCO3) in all treatments. The PNaHCO3 decreased in proportion to the amount of gypsum applied. Applying the organics with gypsum increased the PNaHCO3, PH2O, and organic P concentration compared to gypsum alone. The labile P pools in soil were positively correlated with HCO3- content (r = 0.39-0.77; P < 0.05) of leached and unleached soils. Adding gypsum and compost caused a 10-14% decrease in cumulative P leaching. The cumulative P leaching were greater with rainwater compared to saline water of SAR (sodium adsorption ratio) 5 and 15. The CO32-, HCO3-, pH, and SO42-content of the leachate explained about 71% variability in total P leaching (adj. R2 = 0.71; P < 0.001). This study concludes that low electrolyte water had a greater risk of P leaching and associated environmental pollution. Leaching of the saline-sodic soil amended with gypsum and city waste compost with low SAR saline water can reduce P leaching compared to good quality rainwater.


Asunto(s)
Compostaje , Contaminantes del Suelo , Suelo/química , Sulfato de Calcio/análisis , Sulfato de Calcio/química , Calidad del Agua , Estiércol/análisis , Contaminantes del Suelo/análisis
3.
J Environ Manage ; 296: 113243, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34271352

RESUMEN

Farm level recommendation in salt-affected agricultural landscapes is practically difficult due to spatial variations in inherent soil salinity, diverse farming situations and associated land ownerships with small-scale production systems. This study presents spatial array analysis of 354 geo-referenced soil samples revealing widespread heterogeneity in soil sodicity and fertility status across salt-affected Ghaghar basin of Kaithal district in Haryana, India. Six principal components accounted for 73% of the total variability, and the most important contributors [electrical conductivity (ECe), sodium adsorption ratio (SAR), DTPA extractable copper (Cu) and boron (B), soil organic carbon (OC) and available phosphorus (AP)] as minimum data set were used to develop the soil quality index (SQI). Geostatistical analysis revealed Circular (ECe and AP), Exponential (SAR, OC and B) and Gaussian (Cu) as the best fit semivariogram ordinary kriging model with weak to moderate spatial dependence. Three soil management zones (SMZs) were delineated by grouping the entire area based on soil quality index (SQI). Fertilizer recommendations for rice-wheat cropping system in different SMZs were calculated using soil test crop response (STCR) equation to ensure balanced fertilization, resource saving and reducing environmental footprints. Gypsum requirement map was prepared for systematic allocation and distribution, and enabling farmers to precisely use the mineral gypsum in order to reclaim and reduce stresses led by sodic lands. The implications of this study showed zone-specific advocacy for gypsum application (as soil ameliorant) and balanced fertilization in sustainable restoration of sodic lands, improving nutrient use efficiency and stabilizing crop production in salt-affected regions of India and similar ecologies elsewhere.


Asunto(s)
Carbono , Suelo , Agricultura , Fertilizantes/análisis , India , Cloruro de Sodio
4.
PeerJ ; 11: e14947, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36935921

RESUMEN

Background: The growth and physiological responses to sodicity stress of pear and peach are poorly understood. Insights into how sodicity stress alters tree physiology remain vital to developing salt tolerant scion and rootstock cultivars. Methods: The effects of sodicity stress (soil pHs ~8.8) on tree growth and physiological traits of field grown trees of pear cultivars Punjab Beauty and Patharnakh, and peach cultivars Partap and Shan-e-Punjab were recorded using standard procedures. Sodicity-induced changes in oxidative stressors, proline, anti-oxidant enzymes and leaf ions were measured to draw inferences. Results: Sodicity-induced reductions in vegetative growth were particularly marked in Patharnakh pear and Partap peach compared with other cultivars. Although sodicity stress triggered a significant increase in leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2), their levels relative to controls were much higher in peach than in pear; reflecting that peach suffered from greater oxidative stress. Interestingly, MDA and H2O2 levels did not seem to be deleterious enough to trigger proline-induced osmotic adjustment in pears. The activities of anti-oxidant enzymes strongly varied with the cultivar; specifically, the sodicity-induced increases in CAT and SOD activities were much higher in Punjab Beauty pear and Shan-e-Punjab peach. Principal Component Analysis revealed an explicit convergence between CAT and SOD activities in Punjab Beauty and Shan-e-Punjab cultivars in response to sodicity-induced oxidative stress. Correlation analysis revealed that leaf Na+ strongly inhibited tree growth in peach than in pear. Leaf K+ and proline were found to be the major osmolytes in sodicity-stressed pear and peach cultivars, respectively. Conclusions: We have for the first time studied the effects of sodicity stress on important tree growth and physiological traits of commercially important pear and peach cultivars. Our findings revealed a marked suppressive effect of sodicity stress on tree growth in peach than in pear. The sodicity-induced upticks in leaf malondialdehyde, hydrogen peroxide and Na+ seemed to induce proline-mediated osmotic adjustment in peach but not in pear. The overall better sodicity tolerance in pear compared to peach was ascribed to increased activities of anti-oxidant enzymes catalase and superoxide dismutase enzymes together with restricted Na+ uptake and better leaf K+ levels. Further investigations are needed to elucidate the effects of sodicity stress on genetic and transcriptional changes, and on fruit yield and quality.


Asunto(s)
Prunus persica , Pyrus , Antioxidantes , Peróxido de Hidrógeno , Superóxido Dismutasa , Prolina , Malondialdehído
5.
Environ Sci Pollut Res Int ; 30(55): 116567-116583, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35779215

RESUMEN

The present study highlights the occurrence and the temporal variations of physicochemical properties, and heavy metals in the sludge from sewage treatment plants (STPs) located in industrial (two sites) and non-industrial (one site) cities of Haryana, India. The sludge was acidic (5.59) to neutral (7.21) with a mean EC of 7.4 dS m-1. Prominent heavy metals present in the sewage sludge from industrial sites were Cd, Ni, and Cr with maximum values of 2.83, 1449.0, and 3918.5 mg kg-1, respectively. The contamination and enrichment factor better explained the buildup of Ni, Cr, and Cu in the sewage sludge from industrial sites. The pH, total carbon, phosphorus, and other water-soluble anions, viz. SO42-, Cl-, HCO3-, and PO43-, were the most important attributes of sludge controlling the binding and removal of the metals with particulate matters during the phase separation in STPs. These attributes explained about 90% of the variation in Cd, Ni, Cr, Cu, Mn, and Zn content of the sludge from different STPs. Sludge from the non-industrial site had a low potential ecological risk index of 74.0 compared to a very high-risk index of 2186.5 associated with the industrial sites. This study concludes that besides the concentration of the heavy metals, the enrichment factor coupled with geo-accumulation or ecological risk index can effectively categorize the sludge. However, these indices need to be linked with bioaccumulation, bioaccessibility, and biomass quality under different agroecologies for guiding the safer use of sewage sludge in agriculture.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Ciudades , Cadmio , Metales Pesados/análisis , Medición de Riesgo
6.
Sci Rep ; 13(1): 19787, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957182

RESUMEN

Thermal Power Plant generates FGD gypsum as by-product during coal combustion. This study evaluates the characterization (spectroscopic and elemental), potentially toxic elements (PTEs) distribution, and environmental risk assessment of FGD gypsum for safe and sustainable use in agriculture. The XRD and SEM analysis confirmed the dominance of crystalline CaSO4·2H2O in FGD gypsum. The order of concentrations of PTEs in FGD gypsum was Fe > Al > Mn > Zn > Ni > Co. The residual fraction was the dominant pool, sharing 80-90% of the total PTEs. The heavy metals (HMs) were below the toxic range in the leachates. The Co, Ni, Al, Fe Mn, Zn had low (< 10%) risk assessment code and the ecotoxicity was in the range of 0.0-7.46%. The contamination factor was also low (0.0-0.16) at the normal recommended doses of FGD gypsum application for sodicity reclamation. The enrichment factor was in the order of Al < Mn < Co < Zn < Ni. Mn [enrichment factor (Ef) 1.2-2.0] and Co (Ef 1.7-2.8) showed negligible enrichment of metals, whereas Ni (Ef 4.3-5.2) and Zn (Ef 4.5-5.6) reported moderate accumulation in soil. The application of FGD gypsum @ 10 t ha-1 for sodicity reclamation will develop a geo-accumulation index below the critical values indicating its safe and sustainable use to achieve land degradation neutrality (LDN) and UN's Sustainable Development Goals.

7.
Front Plant Sci ; 13: 1055278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570883

RESUMEN

Fortification of food with mineral micronutrients and micronutrient supplementation occupied the center stage during the two-year-long Corona Pandemic, highlighting the urgent need to focus on micronutrition. Focus has also been intensified on the biofortification (natural assimilation) of mineral micronutrients into food crops using various techniques like agronomic, genetic, or transgenic. Agronomic biofortification is a time-tested method and has been found useful in the fortification of several nutrients in several crops, yet the nutrient use and uptake efficiency of crops has been noted to vary due to different growing conditions like soil type, crop management, fertilizer type, etc. Agronomic biofortification can be an important tool in achieving nutritional security and its importance has recently increased because of climate change related issues, and pandemics such as COVID-19. The introduction of high specialty fertilizers like nano-fertilizers, chelated fertilizers, and water-soluble fertilizers that have high nutrient uptake efficiency and better nutrient translocation to the consumable parts of a crop plant has further improved the effectiveness of agronomic biofortification. Several new agronomic biofortification techniques like nutripriming, foliar application, soilless activation, and mechanized application techniques have further increased the relevance of agronomic biofortification. These new technological advances, along with an increased realization of mineral micronutrient nutrition have reinforced the relevance of agronomic biofortification for global food and nutritional security. The review highlights the advances made in the field of agronomic biofortification via the improved new fertilizer forms, and the emerging techniques that achieve better micronutrient use efficiency of crop plants.

8.
Sci Rep ; 11(1): 1880, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479311

RESUMEN

Judicious application of saline water except for critical growth stages, could be the only practical solution to meet the crop water demand in arid and semi-arid regions, due to limited access to freshwater, especially during dry winter months. A field experiment was conducted to study the effect of tillage [conventional (CT), reduced (RT), and zero (ZT)], rice straw mulch and deficit saline-water irrigation in wheat (100, 80 and 60% of wheat water requirement, CWR) followed by rainfed sorghum on soil properties and the yields of the cropping system. Yields of both the crops were comparable between RT and CT, but the wheat yield was reduced in ZT. The RT, mulching and deficit saline irrigation in wheat season (60% CWR) increased the sorghum fodder yield. Olsen's P (8.7-20.6%) and NH4OAc-K (2.5-7.5%) increased in RT and ZT, respectively, over CT under both the crops. Deficit irrigation reduced soil salinity (ECe) by 0.73-1.19 dS m-1 after each crop cycle, while soil microbial biomass C (MBC) and N (MBN), dehydrogenase, urease and alkaline phosphatase reduced with an increase in ECe. The α-glucosidase, MBC, ECe, KMnO4oxidizable N, and urease were identified as major contributors in developing the soil health index. Deficit irrigation (60% CWR) and rice straw mulching under ZT and RT showed higher values of soil health index. Overall, deficit saline-water irrigation under reduced tillage and straw mulching had the greatest potential in maintaining soil health, saving fresh irrigation water without affecting the productivity of the sorghum-wheat system in the semi-arid regions of India. Results also demonstrated that salt affected areas of arid and semiarid countries can replicate the protocol for indexing and screening of soil health indicators to assess the sustainability of a cropping system. This integrated management based on the nature of the available resources also provided a practical approach to achieve the target of land degradation neutrality and land restoration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA