RESUMEN
The practical recycling of carbon dioxide (CO2) by the electrochemical reduction route requires an active, stable, and affordable catalyst system. Although noble metals such as gold and silver have been demonstrated to reduce CO2 into carbon monoxide (CO) efficiently, they suffer from poor durability and scarcity. Here we report three-dimensional (3D) graphene foam incorporated with nitrogen defects as a metal-free catalyst for CO2 reduction. The nitrogen-doped 3D graphene foam requires negligible onset overpotential (-0.19 V) for CO formation, and it exhibits superior activity over Au and Ag, achieving similar maximum Faradaic efficiency for CO production (â¼85%) at a lower overpotential (-0.47 V) and better stability for at least 5 h. The dependence of catalytic activity on N-defect structures is unraveled by systematic experimental investigations. Indeed, the density functional theory calculations confirm pyridinic N as the most active site for CO2 reduction, consistent with experimental results.
RESUMEN
Nitrogen-doped carbon nanotubes (NCNTs) have been considered as a promising electrocatalyst for carbon-dioxide-reduction reactions, but two fundamental chemistry questions remain obscure: 1)â What are the active centers with respect to various defect species and 2)â what is the role of defect density on the selectivity of NCNTs? The aim of this work is to address these questions. The catalytic activity of NCNTs depends on the structural nature of nitrogen in CNTs and defect density. Comparing with pristine CNTs, the presence of graphitic and pyridinic nitrogen significantly decreases the overpotential (ca. -0.18â V) and increases the selectivity (ca. 80%) towards the formation of CO. The experimental results are in congruent with DFT calculations, which show that pyridinic defects retain a lone pair of electrons that are capable of binding CO2. However, for graphitic-like nitrogen, electrons are located in the π* antibonding orbital, making them less accessible for CO2 binding.
RESUMEN
As an effective and ultrasensitive molecule detection technique, surface-enhanced Raman spectroscopy (SERS) needs efficient and highly responsive substrates to further enhance its sensitivity and utility. In this work, the preparation and characterisation of polyacrylonitrile/gold nanoparticle (PAN/AuNPs) composite porous films have been described for SERS-based detection of methylene blue (MB) dye. The PAN/AuNPs composite films were prepared with a simple dip coating technique, yielding a highly porous structure with uniformly dispersed Au nanoparticles (AuNPs). Scanning electron microscopy (SEM) revealed a linked pore network within the films. In X-ray diffraction (XRD), the characteristic crystal peak of AuNP clusters was observed, proving the presence of AuNPs in the composite. UV-vis absorption spectra also indicated the existence of the AuNPs. The methylene blue (MB) dye has been detected using PAN/AuNPs composite SERS substrates. These substrates showed excellent sensitivity by detecting 50 nM dye concentration and enhancing the Raman peak intensity at 1622 cm-1. The SERS enhancement factor (EF) for MB detection was determined to be around 106, demonstrating the remarkable sensitivity of the PAN/AuNPs composite porous films. The findings demonstrate the enormous potential of PAN/AuNPs composite porous films as reliable SERS substrates, displaying their efficacy in detecting trace levels of analytes in chemical and biological sensing applications.
RESUMEN
The electrochemical conversion of carbon dioxide (CO2 ) to methane (CH4 ), which can be used not only as fuel but also as a hydrogen carrier, has drawn great attention for use in supporting carbon capture and utilization. The design of active and selective electrocatalysts with exceptional CO2 -to-CH4 conversion efficiency is highly desirable; however, it remains a challenge. Here a molecular tuning strategy-in situ amine functionalization of nitrogen-doped graphene quantum dots (GQDs) for highly efficient CO2 -to-CH4 conversion is presented. Amine functionalized nitrogen-doped GQDs achieve a CH4 Faradic efficiency (FE) of 63% and 46%, respectively, at CH4 partial current densities of 170 and 258 mA cm-2 , approximating to or even outperforming state-of-the-art Cu-based electrocatalysts. These GQDs also convert CO2 to C2 products mainly including C2 H4 and C2 H5 OH with a maximum FE of ≈10%. A systematic analysis reveals that the CH4 yield varies linearly with amine group content, whereas the C2 production rate is positively dependent on pyridinic N dopant content. This work provides insight into the rational design of carbon catalysts with CO2 -to-CH4 conversion efficiency at the industrially relevant level.
RESUMEN
A catalyst system with dedicated selectivity toward a single hydrocarbon or oxygenate product is essential to enable the industrial application of electrochemical conversion of CO2 to high-value chemicals. Cu is the only known metal catalyst that can convert CO2 to high-order hydrocarbons and oxygenates. However, the Cu-based catalysts suffer from diverse selectivity. Here, we report that the functionalized graphene quantum dots can direct CO2 to CH4 conversion with simultaneous high selectivity and production rate. The electron-donating groups facilitate the yield of CH4 from CO2 electro-reduction while electron-withdrawing groups suppress CO2 electro-reduction. The yield of CH4 on electron-donating group functionalized graphene quantum dots is positively correlated to the electron-donating ability and content of electron-donating group. The graphene quantum dots functionalized by either -OH or -NH2 functional group could achieve Faradaic efficiency of 70.0% for CH4 at -200 mA cm-2 partial current density of CH4. The superior yield of CH4 on electron-donating group- over the electron-withdrawing group-functionalized graphene quantum dots possibly originates from the maintenance of higher charge density of potential active sites (neighboring C or N) and the interaction between the electron-donating group and key intermediates. This work provides insight into the design of active carbon catalysts at the molecular scale for the CO2 electro-reduction.
RESUMEN
Hexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.
RESUMEN
We have investigated the effect of ferrocene concentration on the synthesis of carbon-nitrogen (C-N) nanotubes. The bamboo-shaped carbon-nitrogen nanotubes were synthesized by spray pyrolysis of Fe(C5H5)2 and CH3CN solution using argon as a carrier gas at the optimum temperature of approximately 900 degrees C. The effect of ferrocene concentration on the length and concentration of nitrogen in nanotubes was studied. Micro-structural features of the nanotubes were monitored employing scanning and transmission electron microscopic techniques. SEM studies reveal that with decreasing ferrocene concentration from 25 mg ml(-1) to 5 mg ml(-1), the length of the nanotubes vary from 80 microm to 430 microm. A feasible growth model has been described and discussed. X-ray photoelectron spectroscopic studies have confirmed the formation of nitrogen-doped carbon nanotubes. These studies reveal that the nitrogen concentration in the nanotubes decreases with the increase of ferrocene concentration. The present synthesis route also provides means of producing carbon nanotubes with different concentrations of nitrogen.
Asunto(s)
Cristalización/métodos , Compuestos Ferrosos/química , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Nitrógeno/química , Compuestos Ferrosos/análisis , Ensayo de Materiales , Metalocenos , Conformación Molecular , Nanotubos de Carbono/análisis , Nitrógeno/análisis , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
Here we report the electrochemical performance of a interesting three-dimensional (3D) structures comprised of zero-dimensional (0D) cobalt oxide nanobeads, one-dimensional (1D) carbon nanotubes and two-dimensional (2D) graphene, stacked hierarchically. We have synthesized 3D self-assembled hierarchical nanostructure comprised of cobalt oxide nanobeads (Co-nb), carbon nanotubes (CNTs), and graphene nanosheets (GNSs) for high-performance supercapacitor electrode application. This 3D self-assembled hierarchical nanostructure Co3O4 nanobeads-CNTs-GNSs (3D:Co-nb@CG) is grown at a large scale (gram) through simple, facile, and ultrafast microwave irradiation (MWI). In 3D:Co-nb@CG nanostructure, Co3O4 nanobeads are attached to the CNT surfaces grown on GNSs. Our ultrafast, one-step approach not only renders simultaneous growth of cobalt oxide and CNTs on graphene nanosheets but also institutes the intrinsic dispersion of carbon nanotubes and cobalt oxide within a highly conductive scaffold. The 3D:Co-nb@CG electrode shows better electrochemical performance with a maximum specific capacitance of 600 F/g at the charge/discharge current density of 0.7A/g in KOH electrolyte, which is 1.56 times higher than that of Co3O4-decorated graphene (Co-np@G) nanostructure. This electrode also shows a long cyclic life, excellent rate capability, and high specific capacitance. It also shows high stability after few cycles (550 cycles) and exhibits high capacitance retention behavior. It was observed that the supercapacitor retained 94.5% of its initial capacitance even after 5000 cycles, indicating its excellent cyclic stability. The synergistic effect of the 3D:Co-nb@CG appears to contribute to the enhanced electrochemical performances.
RESUMEN
The morphology of graphene-based foams can be engineered by reinforcing them with nanocrystalline zirconia, thus improving their oil-adsorption capacity; This can be observed experimentally and explained theoretically. Low zirconia fractions yield flaky microstructures where zirconia nanoparticles arrest propagating cracks. Higher zirconia concentrations possess a mesh-like interconnected structure where the degree of coiling is dependant on the local zirconia content.
RESUMEN
The nitrogen-doped graphene (NG) with dominance of the pyridinic-N configuration is synthesized via a straightforward process including chemical vapor deposition (CVD) growth of graphene and postdoping with a solid nitrogen precursor of graphitic C3N4 at elevated temperature. The NG fabricated from CVD-grown graphene contains a high N content up to 6.5 at. % when postdoped at 800 °C but maintains high crystalline quality of graphene. The obtained NG exhibits high activity, long-standing stability, and outstanding crossover resistance for electrocatalysis of oxygen reduction reaction (ORR) in alkaline medium. The NG treated at 800 °C shows the best ORR performance. Further study of the dependence of ORR activity on different N functional groups in these metal-free NG electrodes provides deeper insights into the origin of ORR activity. Our results reveal that the pyridinic-N tends to be the most active N functional group to facilitate ORR at low overpotential via a four-electron pathway.
RESUMEN
Graphene quantum dots (GQDs) are a promising category of materials with remarkable size dependent properties like tunable bandgap and photoluminescence along with the possibility of effective chemical functionalization. Doping of GQDs with heteroatoms is an interesting way of regulating their properties. Herein, we report a facile and scalable one-step synthesis of luminescent GQDs, substitutionally co-doped with N, F and S, of â¼2 nm average size by a microwave treatment of multi-walled carbon nanotubes in a customized ionic liquid medium. The use of an ionic liquid coupled with the use of a microwave technique enables not only an ultrafast process for the synthesis of co-doped GQDs, but also provides excellent photoluminescence quantum yield (70%), perhaps due to the interaction of defect clusters and dopants.
RESUMEN
Oxygen reduction and evolution reactions are essential for broad range of renewable energy technologies such as fuel cells, metal-air batteries and hydrogen production through water splitting, therefore, tremendous effort has been taken to develop excellent catalysts for these reactions. However, the development of cost-effective and efficient bifunctional catalysts for both reactions still remained a grand challenge. Herein, we report the electrocatalytic investigations of bamboo-shaped carbon nitrogen nanotubes (CNNTs) having different diameter distribution synthesized by liquid chemical vapor deposition technique using different nitrogen containing precursors. These CNNTs are found to be efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. The electrocatalytic activity strongly depends on the nanotube diameter as well as nitrogen functionality type. The higher diameter CNNTs are more favorable for these reactions. The increase in nanotube diameter itself enhances the catalytic activity by lowering the oxygen adsorption energy, better conductivity, and further facilitates the reaction by increasing the percentage of catalytically active nitrogen moieties in CNNTs.
RESUMEN
The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed COOH and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.
RESUMEN
We report the formation of bamboo-shaped carbon-nitrogen nanotubes by employing a simple, one-step and economically viable spray pyrolysis technique using new precursor; acetonitrile and ferrocene solution. By varying the concentration of ferrocene with respect to acetonitrile, it has been found that the optimum concentration of ferrocene in acetonitrile is 5 mg/ml. The special feature of the as-synthesized bamboo-shaped carbon-nitrogen nanotubes bundles is that they are produced in a high yield (1.25 gms/run). They also have long linear extents (approximately 430 microm) and are very clean. The average composition of carbon-nitrogen nanotubes comes out to be C26N.
Asunto(s)
Acetonitrilos/química , Compuestos Ferrosos/química , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión/métodos , Nanotecnología/métodos , Nanotubos de Carbono/química , Nanotubos/química , Nitrógeno/química , Carbono/química , Electroquímica , Microanálisis por Sonda Electrónica , Calor , Materiales Manufacturados , Ensayo de Materiales , Metalocenos , Sasa , Propiedades de Superficie , TemperaturaRESUMEN
We report the formation and characterization of copper nanostructures, nanotubules and nanothreads, which were obtained by electrical arc evaporation of Cu electrodes under varied conditions of He ambience. Electrical arc evaporation was done with approximately 10 V and (approximately 50-100 A) DC current. The current was used in a pulse mode. The evaporated material was condensed on a formvar-coated Cu grid mounted on a liquid N2-cooled specimen holder. Transmission electron microscopy was employed to characterize the condensed materials. These investigations revealed that the condensed materials consisted of the mentioned nanostructures. Nanotubes and nanothreads are formed for a He pressure in the chamber corresponding to approximately 140 and approximately 500 torr, respectively. Extensive electron microscopic investigations showed that the diameter of the nanotubes varied from approximately 5 nm to approximately 50 nm and their length from 2 microns to 3 microns.
Asunto(s)
Cobre/aislamiento & purificación , Nanotecnología/métodos , Nanotubos/química , Nanotubos/ultraestructura , Electroquímica , Microscopía Electrónica , Tamaño de la PartículaRESUMEN
This investigation deals with the effect of growth temperature on the microstructure, nitrogen content, and crystallinity of C-N nanotubes. The X-ray photoelectron spectroscopic (XPS) study reveals that the atomic percentage of nitrogen content in nanotubes decreases with an increase in growth temperature. Transmission electron microscopic investigations indicate that the bamboo compartment distance increases with an increase in growth temperature. The diameter of the nanotubes also increases with increasing growth temperature. Raman modes sharpen while the normalized intensity of the defect mode decreases almost linearly with increasing growth temperature. These changes are attributed to the reduction of defect concentration due to an increase in crystal planar domain sizes in graphite sheets with increasing temperature. Both XPS and Raman spectral observations indicate that the C-N nanotubes grown at lower temperatures possess higher degree of disorder and higher N incorporation.