Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Theor Biol ; 406: 116-23, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27449357

RESUMEN

This paper is devoted to studying obstacle avoiding patterns and cohesiveness of fish school. First, we introduce a model of stochastic differential equations (SDEs) for describing the process of fish school's obstacle avoidance. Second, on the basis of the model we find obstacle avoiding patterns. Our observations show that there are clear four obstacle avoiding patterns, namely, Rebound, Pullback, Pass and Reunion, and Separation. Furthermore, the emerging patterns change when parameters change. Finally, we present a scientific definition for fish school's cohesiveness that will be an internal property characterizing the strength of fish schooling. There are then evidences that the school cohesiveness can be measured through obstacle avoiding patterns.


Asunto(s)
Reacción de Prevención , Conducta Animal , Peces/fisiología , Animales , Modelos Biológicos
2.
Front Neurosci ; 16: 948517, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36440275

RESUMEN

Protein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate various cellular functions, such as transcription, DNA damage response, and signal transduction. PRMT1 is highly expressed in neural stem cells (NSCs) and embryonic brains, suggesting that PRMT1 is essential for early brain development. Although our previous reports have shown that PRMT1 positively regulates oligodendrocyte development, it has not been studied whether PRMT1 regulates NSC proliferation and its survival during development. To examine the role of PRMT1 in NSC activity, we cultured NSCs prepared from embryonic mouse forebrains deficient in PRMT1 specific for NSCs and performed neurosphere assays. We found that the primary neurospheres of PRMT1-deficient NSCs were small and the number of spheres was decreased, compared to those of control NSCs. Primary neurospheres deficient in PRMT1 expressed an increased level of cleaved caspase-3, suggesting that PRMT1 deficiency-induced apoptosis. Furthermore, p53 protein was significantly accumulated in PRMT1-deficient NSCs. In parallel, p53-responsive pro-apoptotic genes including Pmaip1 and Perp were upregulated in PRMT1-deficient NSCs. p53-target p21 mRNA and its protein levels were shown to be upregulated in PRMT1-deficient NSCs. Moreover, the 5-bromo-2'-deoxyuridine (BrdU) incorporation assay showed that the loss of PRMT1 led to cell cycle defects in the embryonic NSCs. In contrast to the above in vitro observations, NSCs normally proliferated and survived in the fetal brains of NSC-specific PRMT1-deficient mice. We also found that Lama1, which encodes the laminin subunit α1, was significantly upregulated in the embryonic brains of PRMT1-deficient mice. These data implicate that extracellular factors provided by neighboring cells in the microenvironment gave a trophic support to NSCs in the PRMT1-deficient brain and recovered NSC activity to maintain brain homeostasis. Our study implies that PRMT1 plays a cell-autonomous role in the survival and proliferation of embryonic NSCs.

3.
Chem Commun (Camb) ; 50(92): 14447-50, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25303723

RESUMEN

The structural change between the random-coil and the double-helix of an ethynylhelicene (M)-nonamer during heating crosses equilibrium. This is a phenomenon where a chemical reaction crosses equilibrium and returns to equilibrium. It is due to an accelerated rate of formation of the double-helix by self-catalysis and an equilibrium shift.


Asunto(s)
Compuestos Policíclicos/química , Catálisis , Conformación Molecular , Soluciones , Temperatura , Tolueno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA