Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Plant Physiol ; 191(1): 252-264, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36250901

RESUMEN

The cause of reduced leaf-level transpiration under elevated CO2 remains largely elusive. Here, we assessed stomatal, hydraulic, and morphological adjustments in a long-term experiment on Aleppo pine (Pinus halepensis) seedlings germinated and grown for 22-40 months under elevated (eCO2; c. 860 ppm) or ambient (aCO2; c. 410 ppm) CO2. We assessed if eCO2-triggered reductions in canopy conductance (gc) alter the response to soil or atmospheric drought and are reversible or lasting due to anatomical adjustments by exposing eCO2 seedlings to decreasing [CO2]. To quantify underlying mechanisms, we analyzed leaf abscisic acid (ABA) level, stomatal and leaf morphology, xylem structure, hydraulic efficiency, and hydraulic safety. Effects of eCO2 manifested in a strong reduction in leaf-level gc (-55%) not caused by ABA and not reversible under low CO2 (c. 200 ppm). Stomatal development and size were unchanged, while stomatal density increased (+18%). An increased vein-to-epidermis distance (+65%) suggested a larger leaf resistance to water flow. This was supported by anatomical adjustments of branch xylem having smaller conduits (-8%) and lower conduit lumen fraction (-11%), which resulted in a lower specific conductivity (-19%) and leaf-specific conductivity (-34%). These adaptations to CO2 did not change stomatal sensitivity to soil or atmospheric drought, consistent with similar xylem safety thresholds. In summary, we found reductions of gc under elevated CO2 to be reflected in anatomical adjustments and decreases in hydraulic conductivity. As these water savings were largely annulled by increases in leaf biomass, we do not expect alleviation of drought stress in a high CO2 atmosphere.


Asunto(s)
Dióxido de Carbono , Árboles , Árboles/fisiología , Dióxido de Carbono/metabolismo , Hojas de la Planta/fisiología , Agua/metabolismo , Suelo
2.
Plant Cell Environ ; 46(10): 3128-3143, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36794448

RESUMEN

The modulation of the leaf energy budget components to maintain optimal leaf temperature are fundamental aspects of plant functioning and survival. Better understanding these aspects becomes increasingly important under a drying and warming climate when cooling through evapotranspiration (E) is suppressed. Combining novel measurements and theoretical estimates, we obtained unusually comprehensive twig-scale leaf energy budgets under extreme field conditions in droughted (suppressed E) and non-droughted (enhanced E) plots of a semi-arid pine forest. Under the same high mid-summer radiative load, leaf cooling shifted from relying on nearly equal contributions of sensible (H) and latent (LE) energy fluxes in non-droughted trees to relying almost exclusively on H in droughted ones, with no change in leaf temperature. Relying on our detailed leaf energy budget, we could demonstrate that this is due to a 2× reduction in leaf aerodynamic resistance. This capability for LE-to-H shift in leaves of mature Aleppo pine trees under droughted field conditions without increasing leaf temperature is likely a critical factor in the resilience and relatively high productivity of this important Mediterranean tree species under drying conditions.


Asunto(s)
Clima , Sequías , Estaciones del Año , Temperatura , Árboles , Hojas de la Planta
3.
Plant Cell Environ ; 46(12): 3775-3790, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37680062

RESUMEN

Climate change is often associated with increasing vapour pressure deficit (VPD) and changes in soil moisture (SM). While atmospheric and soil drying often co-occur, their differential effects on plant functioning and productivity remain uncertain. We investigated the divergent effects and underlying mechanisms of soil and atmospheric drought based on continuous, in situ measurements of branch gas exchange with automated chambers in a mature semiarid Aleppo pine forest. We investigated the response of control trees exposed to combined soil-atmospheric drought (low SM, high VPD) during the rainless Mediterranean summer and that of trees experimentally unconstrained by soil dryness (high SM; using supplementary dry season water supply) but subjected to atmospheric drought (high VPD). During the seasonal dry period, branch conductance (gbr ), transpiration rate (E) and net photosynthesis (Anet ) decreased in low-SM trees but greatly increased in high-SM trees. The response of E and gbr to the massive rise in VPD (to 7 kPa) was negative in low-SM trees and positive in high-SM trees. These observations were consistent with predictions based on a simple plant hydraulic model showing the importance of plant water potential in the gbr and E response to VPD. These results demonstrate that avoiding drought on the supply side (SM) and relying on plant hydraulic regulation constrains the effects of atmospheric drought (VPD) as a stressor on canopy gas exchange in mature pine trees under field conditions.


Asunto(s)
Bosques , Pinus , Presión de Vapor , Agua/fisiología , Árboles/fisiología , Suelo , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Sequías
4.
New Phytol ; 235(4): 1344-1350, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35514143

RESUMEN

Xylem embolism impairs hydraulic conductivity in trees and drives drought-induced mortality. While embolism has been monitored in vivo in potted plants, and research has revealed evidence of embolism in field-grown trees, continuous in situ monitoring of cavitation in forests is lacking. Seasonal patterns of embolism were monitored in branchlets of Aleppo pine (Pinus halepensis) trees growing in a dry Mediterranean forest. Optical visualization (OV) sensors were installed on terminal branches, in addition to monthly sampling for micro computed tomography scans. We detected 208 cavitation events among four trees, which represented an embolism increase from zero to c. 12% along the dry season. Virtually all the cavitation events occurred during daytime hours, with 77% occurring between 10:00 and 17:00 h. The probability for cavitation in a given hour increased as vapor pressure deficit (VPD) increased, up to a probability of 42% for cavitation when VPD > 5 kPa. The findings uniquely reveal the instantaneous environmental conditions that lead to cavitation. The increased likelihood of cavitation events under high VPD in water-stressed pines is the first empirical support for this long hypothesized relationship. Our observations suggest that low levels of embolism are common in Aleppo pine trees at the dry edge of their distribution.


Asunto(s)
Embolia , Pinus , Sequías , Estaciones del Año , Agua , Microtomografía por Rayos X , Xilema
5.
New Phytol ; 235(5): 1729-1742, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35478172

RESUMEN

Carbonyl sulfide (COS) has emerged as a multi-scale tracer for terrestrial photosynthesis. To infer ecosystem-scale photosynthesis from COS fluxes often requires knowledge of leaf relative uptake (LRU), the concentration-normalized ratio between leaf COS uptake and photosynthesis. However, current mechanistic understanding of LRU variability remains inadequate for deriving robust COS-based estimates of photosynthesis. We derive a set of closed-form equations to describe LRU responses to light, humidity and CO2 based on the Ball-Berry stomatal conductance model and the biochemical model of photosynthesis. This framework reproduces observed LRU responses: decreasing LRU with increasing light or decreasing humidity; it also predicts that LRU increases with ambient CO2 . By fitting the LRU equations to flux measurements on a C3 reed (Typha latifolia), we obtain physiological parameters that control LRU variability, including an estimate of the Ball-Berry slope of 7.1 without using transpiration measurements. Sensitivity tests reveal that LRU is more sensitive to photosynthetic capacity than to the Ball-Berry slope, indicating stomatal response to photosynthesis. This study presents a simple framework for interpreting observed LRU variability and upscaling LRU. The stoma-regulated LRU response to CO2 suggests that COS may offer a unique window into long-term stomatal acclimation to elevated CO2 .


Asunto(s)
Dióxido de Carbono , Ecosistema , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Óxidos de Azufre
6.
Glob Chang Biol ; 28(7): 2202-2220, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34953175

RESUMEN

Drylands cover more than 40% of Earth's land surface and occur at the margin of forest distributions due to the limited availability of water for tree growth. Recent elevated temperature and low precipitation have driven greater forest declines and pulses of tree mortality on dryland sites compared to humid sites, particularly in temperate Eurasia and North America. Afforestation of dryland areas has been widely implemented and is expected to increase in many drylands globally to enhance carbon sequestration and benefits to the human environment, but the interplay of sometimes conflicting afforestation outcomes has not been formally evaluated yet. Most previous studies point to conflicts between additional forest area and water consumption, in particular water yield and soil conservation/desalinization in drylands, but were generally confined to local and regional scales. Our global synthesis demonstrates that additional tree cover can amplify water consumption through a nonlinear increase in evapotranspiration-depending on tree species, age, and structure-which will be further intensified by future climate change. In this review we identify substantial knowledge gaps in addressing the dryland afforestation dilemma, where there are trade-offs with planted forests between increased availability of some resources and benefits to human habitats versus the depletion of other resources that are required for sustainable development of drylands. Here we propose a method of addressing comprehensive vegetation carrying capacity, based on regulating the distribution and structure of forest plantations to better deal with these trade-offs in forest multifunctionality. We also recommend new priority research topics for dryland afforestation, including: responses and feedbacks of dryland forests to climate change; shifts in the ratio of ecosystem ET to tree cover; assessing the role of scale of afforestation in influencing the trade-offs of dryland afforestation; and comprehensive modeling of the multifunctionality of dryland forests, including both ecophysiological and socioeconomic aspects, under a changing climate.


Asunto(s)
Ecosistema , Bosques , Cambio Climático , Humanos , Árboles , Agua
7.
New Phytol ; 232(6): 2254-2266, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34536983

RESUMEN

The drier climates predicted for many regions will result in reduced evaporative cooling, leading to leaf heat stress and enhanced mortality. The extent to which nonevaporative cooling can contribute to plant resilience under these increasingly stressful conditions is not well known at present. Using a novel, high accuracy infrared system for the continuous measurement of leaf temperature in mature trees under field conditions, we assessed leaf-to-air temperature differences (ΔTleaf-air ) of pine needles during drought. On mid-summer days, ΔTleaf-air remained < 3°C, both in trees exposed to summer drought and in those provided with supplemental irrigation, which had a more than 10-fold higher transpiration rate. The nonevaporative cooling in the drought-exposed trees must be facilitated by low resistance to heat transfer, generating a large sensible heat flux, H. ΔTleaf-air was weakly related to variations in the radiation load and mean wind speed in the lower part of the canopy, but was dependent on canopy structure and within-canopy turbulence that enhanced the H. Nonevaporative cooling is demonstrated as an effective cooling mechanism in needle-leaf trees which can be a critical factor in forest resistance to drying climates. The generation of a large H at the leaf scale provides a basis for the development of the previously identified canopy-scale 'convector effect'.


Asunto(s)
Sequías , Pinus , Bosques , Hojas de la Planta , Temperatura , Árboles
8.
New Phytol ; 230(4): 1394-1406, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33525059

RESUMEN

The impact of extreme climate episodes such as heatwaves on plants physiological functioning and survival may depend on the event intensity, which requires quantification. We unraveled the distinct impacts of intense (HW) and intermediate (INT) heatwave days on carbon uptake, and the underlying changes in the photosynthetic system, in a Mediterranean citrus orchard using leaf active (pulse amplitude modulation; PAM) and canopy level passive (sun-induced; SIF) fluorescence measurements, together with CO2 , water vapor, and carbonyl sulfide (COS) exchange measurements. Compared to normal (N) days, gross CO2 uptake fluxes (gross primary production, GPP) were significantly reduced during HW days, but only slightly decreased during INT days. By contrast, COS uptake flux and SIFA (at 760 nm) decreased during both HW and INT days, which was reflected in leaf internal CO2 concentrations and in nonphotochemical quenching, respectively. Intense (HW) heatwave conditions also resulted in a substantial decrease in electron transport rates, measured using leaf-scale fluorescence, and an increase in the fractional energy consumption in photorespiration. Using the combined proxy approach, we demonstrate a differential ecosystem response to different heatwave intensities, which allows the trees to preserve carbon assimilation during INT days but not during HW days.


Asunto(s)
Dióxido de Carbono , Citrus , Ecosistema , Fluorescencia , Fotosíntesis , Óxidos de Azufre
9.
New Phytol ; 232(6): 2535-2546, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34480755

RESUMEN

Temperature is a key control over biological activities from the cellular to the ecosystem scales. However, direct, high-precision measurements of surface temperature of small objects, such as leaves, under field conditions with large variations in ambient conditions remain rare. Contact methods, such as thermocouples, are prone to large errors. The use of noncontact remote-sensing methods, such as thermal infrared measurements, provides an ideal solution, but their accuracy has been low (c. 2°C) owing to the necessity for corrections for material emissivity and fluctuations in background radiation Lbg . A novel 'dual-reference' method was developed to increase the accuracy of infrared needle-leaf surface temperature measurements in the field. It accounts for variations in Lbg and corrects for the systematic camera offset using two reference plates. We accurately captured surface temperature and leaf-to-air temperature differences of needle-leaves in a forest ecosystem with large diurnal and seasonal temperature fluctuations with an uncertainty of ± 0.23°C and ± 0.28°C, respectively. Routine high-precision leaf temperature measurements even under harsh field conditions, such as demonstrated here, opens the way for investigating a wide range of leaf-scale processes and their dynamics.


Asunto(s)
Ecosistema , Hojas de la Planta , Temperatura
10.
Plant Cell Environ ; 44(5): 1315-1328, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33175417

RESUMEN

Drought-related tree mortality is increasing globally, but the sequence of events leading to it remains poorly understood. To identify this sequence, we used a 2016 tree mortality event in a semi-arid pine forest where dendrometry and sap flow measurements were carried out in 31 trees, of which seven died. A comparative analysis revealed three stages leading to mortality. First, a decrease in tree diameter in all dying trees, but not in the surviving trees, 8 months "prior to the visual signs of mortality" (PVSM; e.g., near complete canopy browning). Second, a decay to near zero in the diurnal stem swelling/shrinkage dynamics, reflecting the loss of stem radial water flow in the dying trees, 6 months PVSM. Third, cessation of stem sap flow 3 months PVSM. Eventual mortality could therefore be detected long before visual signs were observed, and the three stages identified here demonstrated the differential effects of drought on stem growth, water storage capacity and soil water uptake. The results indicated that breakdown of stem radial water flow and phloem function is a critical element in defining the "point of no return" in the sequence of events leading to mortality of mature trees.


Asunto(s)
Árboles/fisiología , Transporte Biológico , Ritmo Circadiano/fisiología , Ambiente , Gases/metabolismo , Pinus/fisiología , Tallos de la Planta/crecimiento & desarrollo , Estaciones del Año , Temperatura , Agua/metabolismo , Xilema/fisiología
11.
Ecol Appl ; 31(4): e02312, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33630380

RESUMEN

Climate change will impact forest productivity worldwide. Forecasting the magnitude of such impact, with multiple environmental stressors changing simultaneously, is only possible with the help of process-based models. In order to assess their performance, such models require careful evaluation against measurements. However, direct comparison of model outputs against observational data is often not reliable, as models may provide the right answers due to the wrong reasons. This would severely hinder forecasting abilities under unprecedented climate conditions. Here, we present a methodology for model assessment, which supplements the traditional output-to-observation model validation. It evaluates model performance through its ability to reproduce observed seasonal changes of the most limiting environmental driver (MLED) for a given process, here daily gross primary productivity (GPP). We analyzed seasonal changes of the MLED for GPP in two contrasting pine forests, the Mediterranean Pinus halepensis Mill. Yatir (Israel) and the boreal Pinus sylvestris L. Hyytiälä (Finland) from three years of eddy-covariance flux data. Then, we simulated the same period with a state-of-the-art process-based simulation model (LandscapeDNDC). Finally, we assessed if the model was able to reproduce both GPP observations and MLED seasonality. We found that the model reproduced the seasonality of GPP in both stands, but it was slightly overestimated without site-specific fine-tuning. Interestingly, although LandscapeDNDC properly captured the main MLED in Hyytiälä (temperature) and in Yatir (soil water availability), it failed to reproduce high-temperature and high-vapor pressure limitations of GPP in Yatir during spring and summer. We deduced that the most likely reason for this divergence is an incomplete description of stomatal behavior. In summary, this study validates the MLED approach as a model evaluation tool, and opens up new possibilities for model improvement.


Asunto(s)
Ecosistema , Pinus , Finlandia , Bosques , Israel
12.
Glob Chang Biol ; 26(3): 1626-1637, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31736166

RESUMEN

The rate of change in atmospheric CO2 is significantly affected by the terrestrial carbon sink, but the size and spatial distribution of this sink, and the extent to which it can be enhanced to mitigate climate change are highly uncertain. We combined carbon stock (CS) and eddy covariance (EC) flux measurements that were collected over a period of 15 years (2001-2016) in a 55 year old 30 km2 pine forest growing at the semiarid timberline (with no irrigating or fertilization). The objective was to constrain estimates of the carbon (C) storage potential in forest plantations in such semiarid lands, which cover ~18% of the global land area. The forest accumulated 145-160 g C m-2  year-1 over the study period based on the EC and CS approaches, with a mean value of 152.5 ± 30.1 g C m-2  year-1 indicating 20% uncertainty in carbon uptake estimates. Current total stocks are estimated at 7,943 ± 323 g C/m2 and 372 g N/m2 . Carbon accumulated mostly in the soil (~71% and 29% for soil and standing biomass carbon, respectively) with long soil carbon turnover time (59 years). Regardless of unexpected disturbances beyond those already observed at the study site, the results support a considerable carbon sink potential in semiarid soils and forest plantations, and imply that afforestation of even 10% of semiarid land area under conditions similar to that of the study site, could sequester ~0.4 Pg C/year over several decades.


Asunto(s)
Secuestro de Carbono , Bosques , Biomasa , Carbono , Ecosistema , Suelo , Árboles
13.
Appl Opt ; 58(17): 4599-4609, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251275

RESUMEN

Accurate determination of infrared (IR) emissivity is important for non-contact temperature measurement and for energy balance evaluation in systems that exchange radiation. A method for accurate measurement is proposed based on active modulation of the background radiation. The hemispherical directional reflectance is measured as a proxy for directional emissivity using an IR camera and an integrating sphere, while the background radiation is modulated using an IR emitter and a mechanical shutter. Measurement of the apparent temperature observed by the camera under two different illumination conditions allows the extraction of reflectance and emissivity. The accuracy of the measurement and its sensitivity to surface properties are analyzed, showing uncertainty values as low as 0.004 in some cases. Example measurements of natural and artificial surfaces are presented.

14.
Glob Chang Biol ; 24(8): 3486-3498, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29575496

RESUMEN

Carbonyl sulfide (COS) is a tracer of ecosystem photosynthesis that can advance carbon cycle research from leaf to global scales; however, a range of newly reported caveats related to sink/source strength of various ecosystem components hinder its application. Using comprehensive eddy-covariance and chamber measurements, we systematically measure ecosystem contributions from leaf, stem, soil, and litter and were able to close the ecosystem COS budget. The relative contributions of nonphotosynthetic components to the overall canopy-scale flux are relatively small (~4% during peak activity season) and can be independently estimated based on their responses to temperature and humidity. Converting COS to photosynthetic CO2 fluxes based on the leaf relative uptake of COS/CO2 , faces challenges due to observed daily and seasonal changes. Yet, this ratio converges around a constant value (~1.6), and the variations, dominated by light intensity, were found unimportant on a flux-weighted daily time-scale, indicating a mean ratio of daytime gross-to-net primary productivity of ~2 in our ecosystem. The seasonal changes in the leaf relative uptake ratio may indicate a reduction in mesophyll conductance in winter, and COS-derived canopy conductance permitted canopy temperature estimate consistent with radiative skin temperature. These results support the feasibility of using COS as a powerful and much-needed means of assessing ecosystem function and its response to change.


Asunto(s)
Botánica/métodos , Citrus/química , Suelo/química , Óxidos de Azufre/metabolismo , Israel , Hojas de la Planta/química , Tallos de la Planta/química
15.
Nature ; 544(7648): 39-40, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28382982
17.
Glob Chang Biol ; 23(7): 2801-2817, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27809388

RESUMEN

More frequent and intense droughts are projected during the next century, potentially changing the hydrological balances in many forested catchments. Although the impacts of droughts on forest functionality have been vastly studied, little attention has been given to studying the effect of droughts on forest hydrology. Here, we use the Budyko framework and two recently introduced Budyko metrics (deviation and elasticity) to study the changes in the water yields (rainfall minus evapotranspiration) of forested catchments following a climatic drought (2006-2010) in pine forests distributed along a rainfall gradient (P = 280-820 mm yr-1 ) in the Eastern Mediterranean (aridity factor = 0.17-0.56). We use a satellite-based model and meteorological information to calculate the Budyko metrics. The relative water yield ranged from 48% to 8% (from the rainfall) in humid to dry forests and was mainly associated with rainfall amount (increasing with increased rainfall amount) and bedrock type (higher on hard bedrocks). Forest elasticity was larger in forests growing under drier conditions, implying that drier forests have more predictable responses to drought, according to the Budyko framework, compared to forests growing under more humid conditions. In this context, younger forests were shown more elastic than older forests. Dynamic deviation, which is defined as the water yield departure from the Budyko curve, was positive in all forests (i.e., less-than-expected water yields according to Budyko's curve), increasing with drought severity, suggesting lower hydrological resistance to drought in forests suffering from larger rainfall reductions. However, the dynamic deviation significantly decreased in forests that experienced relatively cooler conditions during the drought period. Our results suggest that forests growing under permanent dry conditions might develop a range of hydrological and eco-physiological adjustments to drought leading to higher hydrological resilience. In the context of predicted climate change, such adjustments are key factors in sustaining forested catchments in water-limited regions.


Asunto(s)
Cambio Climático , Sequías , Bosques , Hidrología , Árboles/crecimiento & desarrollo , Agua
18.
New Phytol ; 209(1): 436-46, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26301599

RESUMEN

The carbon sink intensity of the biosphere depends on the balance between gross primary productivity (GPP) of forest canopies and ecosystem respiration. GPP, however, cannot be directly measured and estimates are not well constrained. A new approach relying on canopy transpiration flux measured as sap flow, and water-use efficiency inferred from carbon isotope analysis (GPPSF ) has been proposed, but not tested against eddy covariance-based estimates (GPPEC ). Here we take advantage of parallel measurements using the two approaches at a semi-arid pine forest site to compare the GPPSF and GPPEC estimates on diurnal to annual timescales. GPPSF captured the seasonal dynamics of GPPEC (GPPSF  = 0.99 × GPPEC , r(2)  = 0.78, RMSE = 0.82, n = 457 d) with good agreement at the annual timescale (653 vs 670 g C m(-2)  yr(-1) ). Both methods showed that GPP ranged between 1 and 8 g C m(-2)  d(-1) , and the GPPSF /GPPEC ratio was between 0.5 and 2.0 during 82% of the days. Carbon uptake dynamics at the individual tree scale conformed with leaf scale rates of net assimilation. GPPSF can produce robust estimations of tree- and canopy-scale rates of CO2 uptake, providing constraints and greatly extending current GPPEC estimations.


Asunto(s)
Dióxido de Carbono/metabolismo , Pinus/metabolismo , Carbono/metabolismo , Isótopos de Carbono , Secuestro de Carbono , Ecosistema , Bosques , Israel , Fotosíntesis , Hojas de la Planta/metabolismo , Transpiración de Plantas , Árboles , Agua/metabolismo
19.
New Phytol ; 210(2): 485-96, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27000955

RESUMEN

Short-term, intense heat waves (hamsins) are common in the eastern Mediterranean region and provide an opportunity to study the resilience of forests to such events that are predicted to increase in frequency and intensity. The response of a 50-yr-old Aleppo pine (Pinus halepensis) forest to hamsin events lasting 1-7 d was studied using 10 yr of eddy covariance and sap flow measurements. The highest frequency of heat waves was c. four per month, coinciding with the peak productivity period (March-April). During these events, net ecosystem carbon exchange (NEE) and canopy conductance (gc ) decreased by c. 60%, but evapotranspiration (ET) showed little change. Fast recovery was also observed with fluxes reaching pre-stress values within a day following the event. NEE and gc showed a strong response to vapor pressure deficit that weakened as soil moisture decreased, while sap flow was primarily responding to changes in soil moisture. On an annual scale, heat waves reduced NEE and gross primary productivity by c. 15% and 4%, respectively. Forest resilience to short-term extreme events such as heat waves is probably a key to its survival and must be accounted for to better predict the increasing impact on productivity and survival of such events in future climates.


Asunto(s)
Bosques , Calor , Pinus/fisiología , Estaciones del Año , Aire , Gases/metabolismo , Humedad , Modelos Lineales , Región Mediterránea , Suelo , Presión de Vapor
20.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-37788052

RESUMEN

The ability of plants to adjust to the adverse effects of climate change is important for their survival and for their contribution to the global carbon cycle. This is particularly true in the Mediterranean region, which is among the regions that are most vulnerable to climate change. Here, we carried out a 2-year comparative ecophysiological study of ecosystem function in two similar Eastern Mediterranean forests of the same tree species (Pinus halepensis Mill.) under mild (Sani, Greece) and extreme (Yatir, Israel) climatic conditions. The partial effects of key environmental variables, including radiation, vapor pressure deficit, air temperature and soil moisture (Rg, D, T and soil water content (SWC), respectively), on the ecosystems' CO2 and water vapor fluxes were estimated using generalized additive models (GAMs). The results showed a large adjustment between sites in the seasonal patterns of both carbon and water fluxes and in the time and duration of the optimal period (defined here as the time when fluxes were within 85% of the seasonal maximum). The GAM analysis indicated that the main factor influencing the seasonal patterns was SWC, while T and D had significant but milder effects. During the respective optimal periods, the two ecosystems showed strong similarities in the fluxes' responses to the measured environmental variables, indicating similarity in their underlying physiological characteristics. The results indicate that Aleppo pine forests have a strong phenotypic adjustment potential to cope with increasing environmental stresses. This, in turn, will help their survival and their continued contribution to the terrestrial carbon sink in the face of climate change in this region.


Asunto(s)
Ecosistema , Pinus , Bosques , Árboles , Suelo , Pinus/fisiología , Ciclo del Carbono , Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA