Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 68(3): 326-338, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36476191

RESUMEN

Pulmonary fibrosis (PF) and pulmonary hypertension (PH) are chronic diseases of the pulmonary parenchyma and circulation, respectively, which may coexist, but underlying mechanisms remain elusive. Mutations in the GCN2 (general control nonderepressible 2) gene (EIF2AK4 [eukaryotic translation initiation factor 2 alpha kinase 4]) were recently associated with pulmonary veno-occlusive disease. The aim of this study is to explore the involvement of the GCN2/eIF2α (eukaryotic initiation factor 2α) pathway in the development of PH during PF, in both human disease and in a laboratory animal model. Lung tissue from patients with PF with or without PH was collected at the time of lung transplantation, and control tissue was obtained from tumor resection surgery. Experimental lung disease was induced in either male wild-type or EIF2AK4-mutated Sprague-Dawley rats, randomly receiving a single intratracheal instillation of bleomycin or saline. Hemodynamic studies and organ collection were performed 3 weeks after instillation. Only significant results (P < 0.05) are presented. In PF lung tissue, GCN2 protein expression was decreased compared with control tissue. GCN2 expression was reduced in CD31+ endothelial cells. In line with human data, GCN2 protein expression was decreased in the lung of bleomycin rats compared with saline. EIF2AK4-mutated rats treated with bleomycin showed increased parenchymal fibrosis (hydroxyproline concentrations) and vascular remodeling (media wall thickness) as well as increased right ventricular systolic pressure compared with wild-type animals. Our data show that GCN2 is dysregulated in both humans and in an animal model of combined PF and PH. The possibility of a causative implication of GCN2 dysregulation in PF and/or PH development should be further studied.


Asunto(s)
Hipertensión Pulmonar , Fibrosis Pulmonar , Animales , Humanos , Masculino , Ratas , Bleomicina , Células Endoteliales/patología , Hipertensión Pulmonar/patología , Pulmón/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Fibrosis Pulmonar/patología , Ratas Sprague-Dawley
2.
Pulm Circ ; 13(1): e12177, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36618712

RESUMEN

Pulmonary hypertension (PH) is a chronic disorder of the pulmonary circulation that often associates with other respiratory diseases (i.e., group III PH), leading to worsened symptoms and prognosis, notably when combined with interstitial lung diseases such as pulmonary fibrosis (PF). PH may lead to right ventricular (RV) failure, which accounts for a substantial part of the mortality in chronic lung disease patients. The disappointing results of pulmonary arterial hypertension (PAH)-related therapies in patients with PF emphasize the need to better understand the pathophysiologic mechanisms that drive PH development and progression in this specific setting. In this work, we validated an animal model of group III PH associated with PF (PH-PF), by using bleomycin (BM) intratracheal instillation and characterizing the nature of induced lung and vascular remodeling, including the influence on RV structure and function. To our knowledge, this is the first work describing this dose of BM in Sprague Dawley rats and the effects upon the heart and lungs, using different techniques such as echocardiography, heart catheterization, and histology. Our data shows the successful implementation of a rat model that mimics combined PF-PH, with most features seen in the equivalent human disease, such as lung and arterial remodeling, increased mPAP and RV dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA