RESUMEN
We report a structural characterization by electron microscopy and image analysis of a supramolecular complex consisting of Photosystem I (PSI) and the chlorophyll-binding protein IsiA from a mutant of the cyanobacterium Synechocystis PCC 6803 lacking the PsaF and PsaJ subunits. The circular complex consists of a central PSI trimer surrounded by a ring of 17 IsiA units, one less than in the wild-type supercomplex. We conclude that PsaF and PsaJ are not obligatory for the binding of the IsiA ring, and that the size of the PSI complex determines the number of IsiA units in the ring. The resulting number of 17 copies implies that each PSI monomer has a different association to the IsiA ring.
Asunto(s)
Proteínas Bacterianas , Cristalografía/métodos , Cianobacterias/química , Complejo de Proteína del Fotosistema I/química , Cianobacterias/clasificación , Cianobacterias/metabolismo , Sustancias Macromoleculares , Microscopía Electrónica , Complejo de Proteína del Fotosistema I/metabolismo , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/deficiencia , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad de la EspecieRESUMEN
We report a structural characterization by electron microscopy and image analysis of a supramolecular complex consisting of photosystem I and light-harvesting complex I from the unicellular green alga Chlamydomonas reinhardtii. The complex is a monomer, has longest dimensions of 21.3 and 18.2 nm in projection, and is significantly larger than the corresponding complex in spinach. Comparison with photosystem I complexes from other organisms suggests that the complex contains about 14 light-harvesting proteins, two or three of which bind at the side of the PSI-H subunit. We suggest that special light-harvesting I proteins play a role in the binding of phosphorylated light-harvesting complex II in state 2.
Asunto(s)
Chlamydomonas reinhardtii/ultraestructura , Proteínas del Complejo del Centro de Reacción Fotosintética/ultraestructura , Animales , Centrifugación por Gradiente de Densidad , Chlamydomonas reinhardtii/química , Cianobacterias/química , Cianobacterias/ultraestructura , Electroforesis en Gel de Poliacrilamida , Procesamiento de Imagen Asistido por Computador , Sustancias Macromoleculares , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Complejo de Proteína del Fotosistema I , Proteínas de Plantas/química , Spinacia oleracea/química , Spinacia oleracea/ultraestructura , Tilacoides/química , Tilacoides/ultraestructuraRESUMEN
Recent blue-native gel electrophoresis studies gave evidence for the existence of dimeric and trimeric PSI complexes in green plants. We used single particle electron microscopy to investigate all the larger particles from the thylakoid membrane of pea (Pisum sativum var. Charmette). Peak fractions with monomeric, dimeric and trimeric Photosystem I were obtained after solubilization with digitonin and size-exclusion chromatography. The analysis showed that only a few percent of dimers and trimers were present. In the best resolved trimers some of the monomers were oriented upside down. Many classes were fuzzy, indicating a non-specific or flexible orientation. From these results we conclude that the green plant PSI is monomeric within the green plant membrane.
Asunto(s)
Complejo de Proteína del Fotosistema I/metabolismo , Pisum sativum/metabolismo , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Cromatografía en Gel , Microscopía Electrónica , Pisum sativum/ultraestructura , Complejo de Proteína del Fotosistema I/ultraestructura , Unión Proteica , Estructura Cuaternaria de Proteína , Tilacoides/químicaRESUMEN
A genetic approach has been adopted to investigate the organization of the light-harvesting proteins in the photosystem II (PSII) complex in plants. PSII membrane fragments were prepared from wild-type Arabidopis thaliana and plants expressing antisense constructs to Lhcb4 and Lhcb5 genes, lacking CP29 and CP26, respectively (Andersson et al. (2001) Plant Cell 13, 1193-1204). Ordered PS II arrays and PS II supercomplexes were isolated from the membranes of plants lacking CP26 but could not be prepared from those lacking CP29. Membranes and supercomplexes lacking CP26 were less stable than those prepared from the wild type. Transmission electron microscopy aided by single-particle image analysis was applied to the ordered arrays and the isolated PSII complexes. The difference between the images obtained from wild type and antisense plants showed the location of CP26 to be near CP43 and one of the light-harvesting complex trimers. Therefore, the location of the CP26 within PSII was directly established for the first time, and the location of the CP29 complex was determined by elimination. Alterations in the packing of the PSII complexes in the thylakoid membrane also resulted from the absence of CP26. The minor light-harvesting complexes each have a unique location and important roles in the stabilization of the oligomeric PSII structure.