Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38463979

RESUMEN

Pathophysiology of many neuropsychiatric disorders, including schizophrenia (SCZD), is linked to habenula (Hb) function. While pharmacotherapies and deep brain stimulation targeting the Hb are emerging as promising therapeutic treatments, little is known about the cell type-specific transcriptomic organization of the human Hb or how it is altered in SCZD. Here we define the molecular neuroanatomy of the human Hb and identify transcriptomic changes in individuals with SCZD compared to neurotypical controls. Utilizing Hb-enriched postmortem human brain tissue, we performed single nucleus RNA-sequencing (snRNA-seq; n=7 neurotypical donors) and identified 17 molecularly defined Hb cell types across 16,437 nuclei, including 3 medial and 7 lateral Hb populations, several of which were conserved between rodents and humans. Single molecule fluorescent in situ hybridization (smFISH; n=3 neurotypical donors) validated snRNA-seq Hb cell types and mapped their spatial locations. Bulk RNA-sequencing and cell type deconvolution in Hb-enriched tissue from 35 individuals with SCZD and 33 neurotypical controls yielded 45 SCZD-associated differentially expressed genes (DEGs, FDR < 0.05), with 32 (71%) unique to Hb-enriched tissue. eQTL analysis identified 717 independent SNP-gene pairs (FDR < 0.05), where either the SNP is a SCZD risk variant (16 pairs) or the gene is a SCZD DEG (7 pairs). eQTL and SCZD risk colocalization analysis identified 16 colocalized genes. These results identify topographically organized cell types with distinct molecular signatures in the human Hb and demonstrate unique genetic changes associated with SCZD, thereby providing novel molecular insights into the role of Hb in neuropsychiatric disorders. One Sentence Summary: Transcriptomic analysis of the human habenula and identification of molecular changes associated with schizophrenia risk and illness state.

2.
Behav Neurosci ; 135(2): 255-266, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34060878

RESUMEN

Orbital frontal cortex (OFC) research has historically emphasized the function of this associative cortical area within top-down theoretical frameworks. This approach has largely focused on mapping OFC activity onto human-defined psychological or cognitive constructs and has often led to OFC circuitry bearing the weight of entire theoretical frameworks. New techniques and tools developed in the last decade have made it possible to revisit long-standing basic science questions in neuroscience and answer them with increasing sophistication. We can now study and specify the genetic, molecular, cellular, and circuit architecture of a brain region in much greater detail, which allows us to piece together how they contribute to emergent circuit functions. For instance, adopting such systematic and unbiased bottom-up approaches to elucidating the function of the visual system has paved the way to building a greater understanding of the spectrum of its computational capabilities. In the same vein, we argue that OFC research would benefit from a more balanced approach that also places focus on novel bottom-up investigations into OFC's computational capabilities. Furthermore, we believe that the knowledge gained by employing a more bottom-up approach to investigating OFC function will ultimately allow us to look at OFC's dysfunction in disease through a more nuanced biological lens. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Asunto(s)
Lóbulo Frontal , Corteza Prefrontal , Humanos
3.
Curr Opin Behav Sci ; 41: 45-49, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34056054

RESUMEN

Subjective experience is a powerful contributor to value-based decision-making. Not every decision is the same, nor made in isolation. Rather, decision-making relies on historical information and internal states for adaptive control. Hence, it is inherently continuous with respect to time - one decision or action evolves into the next. However, forays into the neurobiological underpinnings of decision-making have too frequently ignored the contribution of such continuous subjective experience, instead tying circuit activity and brain area involvement to discrete averaged behaviors and task parameters. While much information has been gained through these investigations, recent works have demonstrated the potential for a greater understanding of neural mechanisms when the continuous, experiential nature of behavior is integrated into the investigation. Such integration has important implications for disease states with disordered decision-making such as addiction, where subjective experience is a large contributor to the disorder.

4.
Elife ; 102021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33729155

RESUMEN

Psychiatric disease often produces symptoms that have divergent effects on neural activity. For example, in drug dependence, dysfunctional value-based decision-making and compulsive-like actions have been linked to hypo- and hyperactivity of orbital frontal cortex (OFC)-basal ganglia circuits, respectively; however, the underlying mechanisms are unknown. Here we show that alcohol-exposed mice have enhanced activity in OFC terminals in dorsal striatum (OFC-DS) associated with actions, but reduced activity of the same terminals during periods of outcome retrieval, corresponding with a loss of outcome control over decision-making. Disrupted OFC-DS terminal activity was due to a dysfunction of dopamine-type 1 receptors on spiny projection neurons (D1R SPNs) that resulted in increased retrograde endocannabinoid signaling at OFC-D1R SPN synapses reducing OFC-DS transmission. Blocking CB1 receptors restored OFC-DS activity in vivo and rescued outcome-based control over decision-making. These findings demonstrate a circuit-, synapse-, and computation-specific mechanism gating OFC activity in alcohol-exposed mice.


Asunto(s)
Toma de Decisiones/fisiología , Etanol/administración & dosificación , Lóbulo Frontal/fisiología , Corteza Prefrontal/fisiología , Animales , Femenino , Masculino , Ratones
5.
Elife ; 72018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29897332

RESUMEN

Recent hypotheses have posited that orbital frontal cortex (OFC) is important for using inferred consequences to guide behavior. Less clear is OFC's contribution to goal-directed or model-based behavior, where the decision to act is controlled by previous experience with the consequence or outcome. Investigating OFC's role in learning about changed outcomes separate from decision-making is not trivial and often the two are confounded. Here we adapted an incentive learning task to mice, where we investigated processes controlling experience-based outcome updating independent from inferred action control. We found chemogenetic OFC attenuation did not alter the ability to perceive motivational state-induced changes in outcome value but did prevent the experience-based updating of this change. Optogenetic inhibition of OFC excitatory neuron activity selectively when experiencing an outcome change disrupted the ability to update, leaving mice unable to infer the appropriate behavior. Our findings support a role for OFC in learning that controls decision-making.


Asunto(s)
Conducta de Elección/fisiología , Toma de Decisiones/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Placa-Clamp , Corteza Prefrontal/citología , Recompensa , Sacarosa/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA