Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Data Brief ; 56: 110852, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39281010

RESUMEN

Detecting and screening clouds is the first step in most optical remote sensing analyses. Cloud formation is diverse, presenting many shapes, thicknesses, and altitudes. This variety poses a significant challenge to the development of effective cloud detection algorithms, as most datasets lack an unbiased representation. To address this issue, we have built CloudSEN12+, a significant expansion of the CloudSEN12 dataset. This new dataset doubles the expert-labeled annotations, making it the largest cloud and cloud shadow detection dataset for Sentinel-2 imagery up to date. We have carefully reviewed and refined our previous annotations to ensure maximum trustworthiness. We expect CloudSEN12+ will be a valuable resource for the cloud detection research community.

2.
Sci Data ; 9(1): 782, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566333

RESUMEN

Accurately characterizing clouds and their shadows is a long-standing problem in the Earth Observation community. Recent works showcase the necessity to improve cloud detection methods for imagery acquired by the Sentinel-2 satellites. However, the lack of consensus and transparency in existing reference datasets hampers the benchmarking of current cloud detection methods. Exploiting the analysis-ready data offered by the Copernicus program, we created CloudSEN12, a new multi-temporal global dataset to foster research in cloud and cloud shadow detection. CloudSEN12 has 49,400 image patches, including (1) Sentinel-2 level-1C and level-2A multi-spectral data, (2) Sentinel-1 synthetic aperture radar data, (3) auxiliary remote sensing products, (4) different hand-crafted annotations to label the presence of thick and thin clouds and cloud shadows, and (5) the results from eight state-of-the-art cloud detection algorithms. At present, CloudSEN12 exceeds all previous efforts in terms of annotation richness, scene variability, geographic distribution, metadata complexity, quality control, and number of samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA